
3D GRAVITY INVERSION TUTORIAL

Steps:	Page
1. Import data to new or existing database	2
2. Examine data	5
3. Perform initial forward modeling	7
4. Perform 3D gravity inversions	8
5. Check mode and create plots	19

1. Import data

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

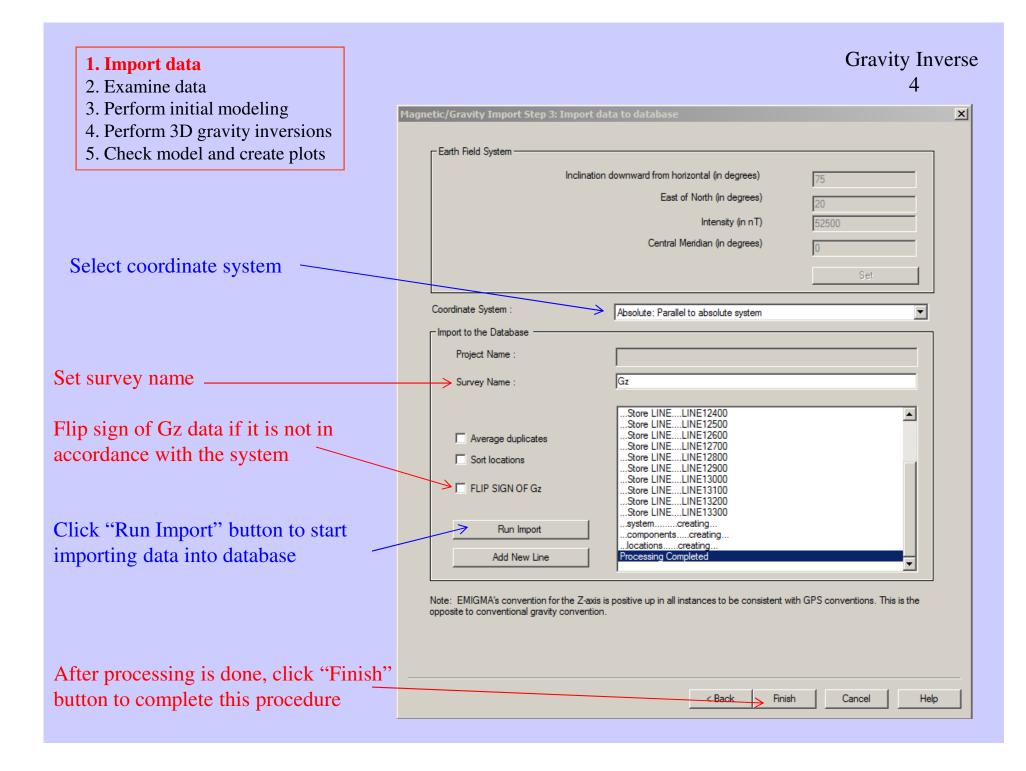
Browse and select .qct or .xyz data file for import

		G	ravity import Step 1: Select a data file ar	nd set data setting	×
			Input Data File		
nport		×	E:\Importdata\Gravity\Gz.xyz		Browser
Raw Data Formats	Other Sources		QCT format	XYZ ASCII format	
	Pata Groups			Select one line as the header line	
	O EM		// RX1:GZ // X Y	Z TX1RX1	
	Potential Field		LINE LINE12125 12125.000000 9900.0	000000 1.000000 2.71180	0992E+001
	C IP/Resistivity		12125.000000 9925.0 12125.000000 9950.0	000000 1.000000 2.70049 000000 1.000000 2.70104	9992E+001 Set Header Line
		-	•		Load Header Line
	DC Magnetics (ground or airborne) - VECTOR,TMI or GRADIENTS Gravity (ground or airborne) - SCALAR or TENSOR Magnetic Ground (Scintrex)		Data Setting	meters	C feet
	Pico (binary format)		UTM_X: X	• meters • meters	C feet
115	Geosoft Grid File (Potential Field) 3-Sensors Helicopter		UTM_Y : Y Z :(Altitude) Z	▼ meters	C feet
	Borehole (magnetics and gravity) Crone (Borehole Magnetic)		1.1	Latitude / Lo	ngitude (degree)
A BO			GPS_Z : (m)	Latitude :	v
1 2000			Fiducial :	Longitude :	,
			Line Label	V	
			Output		
		1	Gz TX1RX1	C GTotal	✓ data unit: mGal
			Gradient Tensor (mGal/m)	,	
					Gxz
			Gyx Ž		Gyz I
			Gzx 💌		Gzz
	OK Cancel Help				
				< Back Nex	t > Cancel Help
Set coordina	te axis and output data colum	n names			
	C	lick "Next "	button		
	C	nek mext	oution		

Gravity Inverse 2

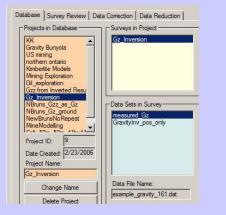
1. Import data

- 2. Examine data
- 3. Perform initial modeling

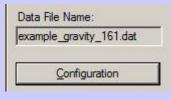

Click "Next " button

- 4. Perform 3D gravity inversions
- 5. Check model and create plots

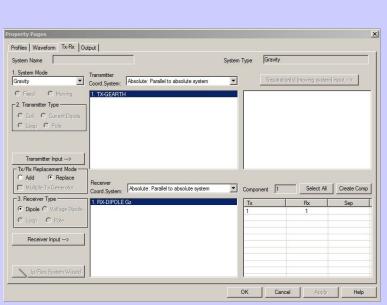
Show profile information, and users can make delete/reduction/shift operations on profile in this dialog


rs	Total Number of Profiles: 14 Profile # Locations LINE12125 45 LINE12175 29 LINE12255 45 LINE12200 45 LINE12500 45 LINE12600 45 LINE12800 45 LINE12800 45 LINE12800 45 LINE12800 45 LINE12800 45 LINE13000 45 LINE1300 45 LINE1300 45 LINE13300 45 LINE13300 45	Total Number of Locations: 614 Modify Profile(s)	
		< Back Next > Cancel	Help

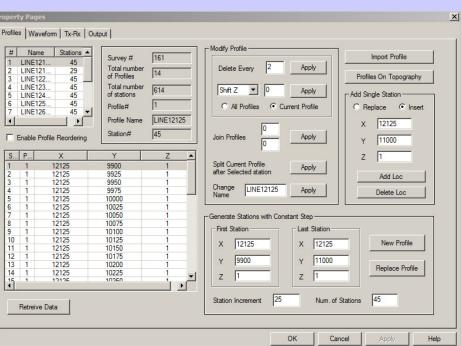
Gravity Inverse

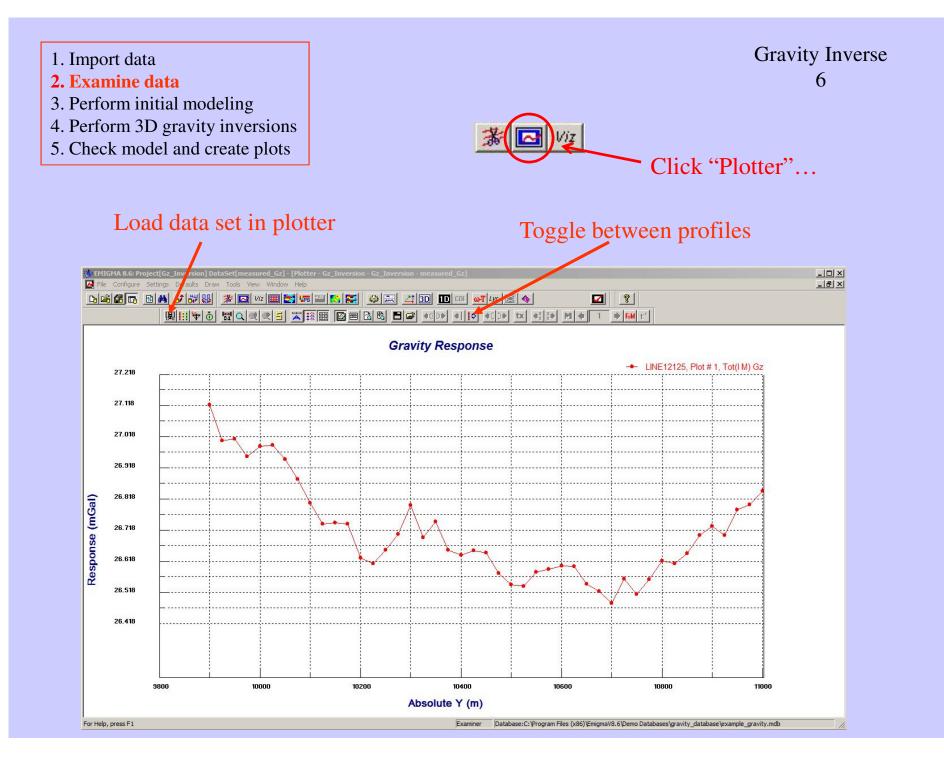


- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots


1. Check database for the survey

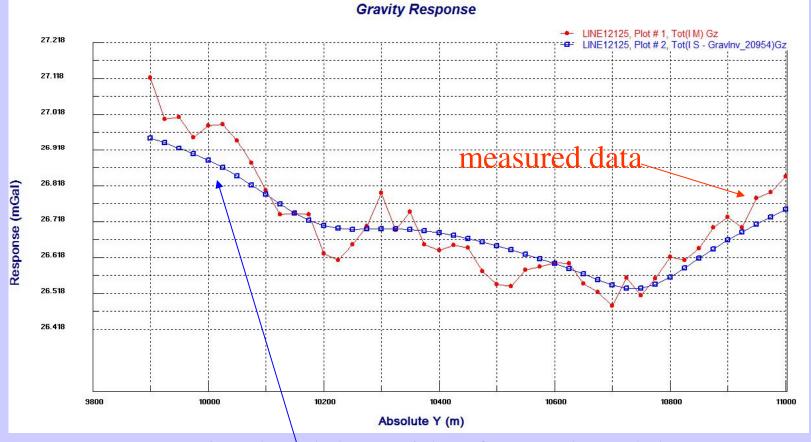
2. Click configuration

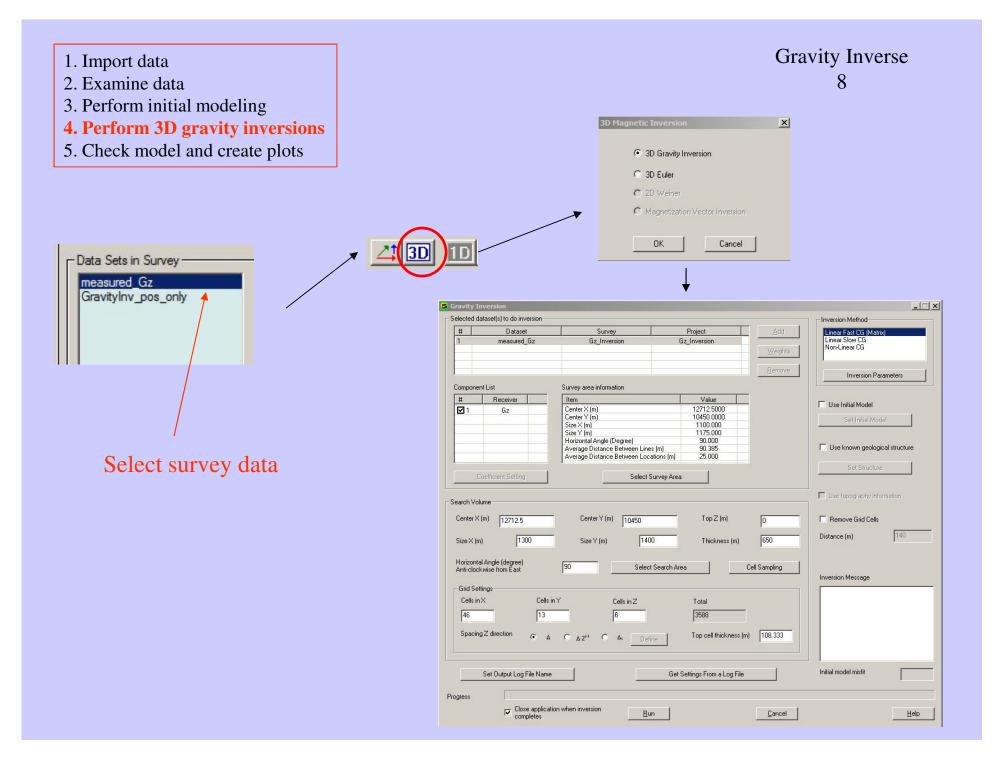

4. Check lines and stations are correct



Gravity Inverse

5


3. Check system configuration


- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

Note: *Performed some initial modeling to get a "feel" of the data and estimate parameters of initial model for inversion.*

simulated data with a forward model

Gravity Inverse 7

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

- 🗆 × 🖀 Gravity Inve Selected dataset(s) to do inversion Inversion Method Survey Project Dataset Linear Fast CG (Matrix) Ħ Processed Ground Gravity GroundGravity Linear Slow CG Non-Linear CG Inversion Parameters Component List Survey area information # Receiver Item Value Use Initial Model 1 Center X (m) 588500.0000 Gz Center Y (m) 6471100.0000 Size X (m) 11700.000 6200.000 Size Y (m) Horizontal Angle (Degree) 0.000 Use known geological structure Average Distance Between Lines (m) 100.000 Average Distance Between Locations (m) 301.076 Select Survey Area Use topography information Search Volum Top Z (m) Center X (m) 588500 Center Y (m) 6471100 Remove Grid Cells Distance (m) 3000 14000 7400 Size X (m) Size Y (m) Thickness (m) Horizontal Angle (degree) Select Search Area Cell Sampling Anti-clockwise from East Inversion Message - Grid Settings Cells in X Cells in Y Cells in Z Total 25 9625 Spacing Z direction ⊙ Δ C Δ·2ⁱ⁺¹ C Top cell thickness (m) 600 A; Initial model misfil Set Output Log File Name Get Settings From a Log File Progress Close application when inversion <u>R</u>un Cancel Help completes

Gravity Inverse 9

Selected Data Sets

A dataset may be added for use in the inversion by clicking **Add**. Each dataset is given equal weight by default. This can be changed by clicking **Weights**.

Components

Components that will be used in the inversion are displayed here.

Log File

A log file is created each time an inversion is run. The name and location of the log file can be specified by clicking **Set Output Log File Name**. Click **Get Settings From a Log File** to use the settings from a previous inversion.

Use topography information

This option will be enabled if you imported your data with a gps z

channel. Select this option and the gps z values will be used when performing the inversion. When loading inversion results to the visualizer, a window will appear asking to display the survey according to z or gps z. Select gps z to see the inversion results with topography.

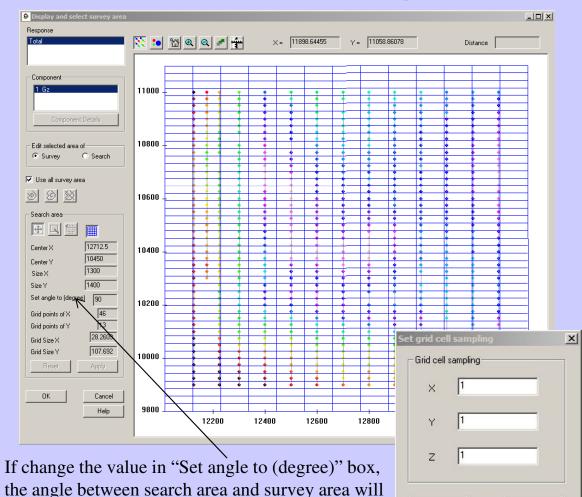
Remove Grid Cells

Any cells that are beyond the specified **Distance** from the closest data point will be removed from the inversion result.

Geological Structure

Click **Use known geological structure** to define a structure that will apply constraints to the inversion result.

Initial model misfit


Defines how close the initial model fits the data. The closer the value is to 0, the better the fit.

- 1. Import data
- 2. Examine data

be changed accordingly

- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

Clicking either the **Select Search Area** or **Select Survey Area** buttons launches the same window. But search area means the area of data which the inversion algorithm works on, while survey area is the whole part of the imported survey data.

<u>0</u>K

Cancel

Survey Area

Click the Select survey area button to launch the graphical tool which enables you to specify the data points that will be used in the inversion calculations.

Gravity Inverse

10

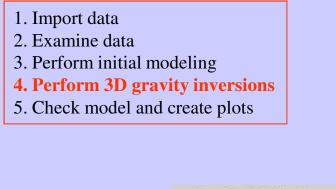
Search Volume

The default parameters in the **Search Volume** section will create a grid that covers the entire survey. You can modify the search area parameters by entering new values or by using the graphical tool

Cell Sampling

Grid cells defined in **Search Volume** can be divided into smaller units when calculate the simulated data by clicking **Cell Sampling.** Type your values in the **X**, **Y** and **Z** boxes to specify the number of samples in the X, Y and Z directions

 Import data Examine data Perform initial modeling 	040.00			Gravity Inverse 11
4. Perform 3D gravity inversions5. Check model and create plots	Cells in X	Cells in Y 77	Cells in Z	Total 9625
	Spacing Z direction	• Δ Ο Δ·2 ⁱ⁺¹	Ο Δ _i Define	Top cell thickness (m) 130


it the search gri	d cell thickness					
otal thickness		650		Top Z		
otal thickness afte	r modification	650		0		
Search grid cell th	ickness	,		,		
Index	Thickness		D	epth		
1	130.0000		-130	0.0000		
2	130.0000			0.0000		
3	130.0000			0.0000		
4	130.0000 130.0000).0000).0000		-
Thickness (m)	130		nsert Inde	эх	6	
Modify	the selected		I	nsert a thickne	88	
	Delete	the select	ted			
ote: Multi	ple thickness items car	n be selec	ted.			
	<u>Ω</u> K	<u>(</u>	Cancel		<u>H</u> elp	

Grid Settings

Confirm the number and layout of grid points to be used in the inversion in the **Grid Settings** area. The points will be evenly spaced in the x and y directions. Choose Δ for evenly spaced points in the z direction or $\Delta \cdot 2^{i-1}$ for exponentially spaced points. You may specify a custom spacing by selecting Δ_i . Your custom settings can be later modified by clicking **Define**.

Editing the Grid Cell Thickness

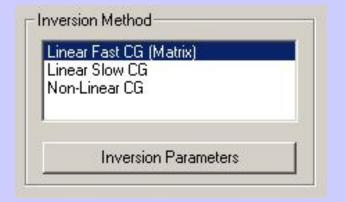
The interface displays the total thicknesses before and after editing as well as the topmost z value. The cell sizes are listed in the **Search** grid cell thickness section.

	r Fast CG (Matrix)	
	r Slow CG Linear CG	
140111		

Inversion Methods

Gravity Inverse

12

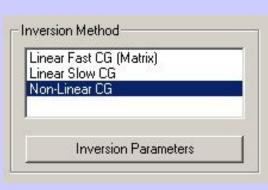

There are three inversion methods to choose from. Set parameters for your chosen technique by clicking the Inversion Parameters button.

Linear Fast CG(Matrix) - Direct inversion technique that assumes that the forward function can be linearized. Quick technique but is bounded by solving for a small amount of parameters.

Linear Slow CG - Same as the fast technique but is necessary for cases when the number of data points or the number of grid cells is very large.

Non-Linear CG - General concept is to start with an initial guess and go looking for the best fitting model by minimizing a given function using an iteration process.

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots


Linear CG Technique

Assumes that the forward function can be linearized. Quick technique but is bounded by solving for a small amount of parameters.

$\label{eq:d} \begin{array}{l} d = F \ m \\ d \rightarrow \ vector \ of \ N- \ dimension \\ F \rightarrow \ Matrix \ of \ N \times M - \ dimension \\ m \rightarrow \ vector \ of \ M - \ dimension \end{array}$

 $H_{ext}(r) = \int G(r,r')J(r')dr'$ $J(r') = (m(r') - m_0)H_{ins}(r') = \chi(r')H_{ins}(r')$

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

Non-Linear CG General

concept is to start with an initial guess and go looking for the best fitting model by minimizing a given function using an iteration process.

Unconstrained Conjugate Gradient Minimization

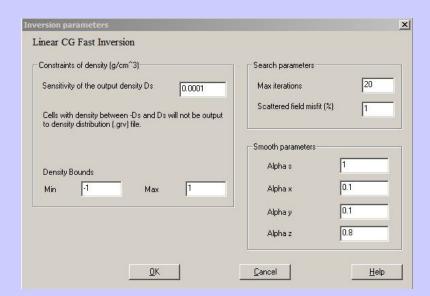
Uses the derivative information to construct two sequences of orthogonal vectors to define the search direction at a given iteration. Then by trial and error (line search) to move to the local minimum in that direction. The iteration stops when the gradient has achieved the required minimum value. This is an unconstrained minimization technique where the bounds on the parameters are imposed after the search is completed.

$$\phi(m) = \lambda \phi_d(m) + \phi_m(m)$$

 $\begin{aligned} \varphi(m) &- \text{functional to be minimized} \\ \varphi_d(m) &- \text{data misfit} \\ \varphi_m(m) &- \text{model misfit} \\ \lambda &- \text{Lagrangian multiplier} - \text{regularization weight} \end{aligned}$

Critical factors to Optimization Results:

- Good forward simulation algorithm
- Good minimization technique
- Good starting model
- Good data


Occam style model misfit function

 $\boldsymbol{\phi}_{\mathbf{m}}(\mathbf{m}) = \boldsymbol{\alpha}_0 \int \mathbf{w}^2(\mathbf{z}) \left[\mathbf{m}(\mathbf{r}) - \mathbf{m}^0(\mathbf{r}) \right]^2 d\mathbf{v} +$

 $\sum_{i=x.v.z} \alpha_i \int [w(z) \nabla_i (m(r)-m^0(r))]^2 dv$

 α_I - weighting factors w(z) - depth weighting

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

Constraint of Density

Output Sensitivity Cells with density IDI (close to 0 - where the user defines how close) are constrained or thrown out after each iteration. will not be output to the density distribution (.grv) files

Xmin Upon completion of iteration, X values less than Xmin will be set equal to Xmin

Xmax Upon completion of iteration, X values greater than Xmaz will be set equal to Xmax

Search Parameters

Maximum Iterations

User defines the number of iterations the program will run to generate the final solution. In general the default (25 for Linear Fast CG and about 15 for the others) is sufficient for the inversion.

Gravity Inverse

15

Scattered field misfit

Defines the "stop" criteria for an iteration when the difference between the measured and simulated scattered field falls within a certain percentage of the measured value.

Smooth parameters

Larger values will increase the smoothness of the inversion result. Alpha s decreases the range of all the density values. Alpha x, y and z decreases the difference between the density of two neighboring cells in the x, y and z directions respectively.

1. Import data 2. Examine data 3. Perform initial modeling Build/Modify a model-Center (m) Size (m) Angle (degree) Density (a/cm^3) 4. Perform 3D gravity inversions × 588500 X 14000 1st Y 7400 Y 6471100 5. Check model and create plots 2nd Z 3000 z -1500 Add a prism 3rd Set size to all selected Set angles to all selected Set density to all selected Drisms nrisms Import a mode Delete all selected prisms Initial Model Size Z Density 1st Angle 2nd Angle 3rd Angle Size X Size Y (g/cm^3 (degree (degree) (degree) (m) (m) (m) There are no items to show in this view

Note: To modify a property of an individual prism in the list, directly double-click it, then input a new value

ΩK

Gravity Inverse 16 ×

Initial Model

Click the checkbox labelled Use Initial Model to specify an initial model. Return to the initial model window by clicking the Set Initial Model button.

The starting model is described by a list of prisms with various properties in the box labelled **Starting** anomaly list.

add a prism to the model list

Specify the density, size, position and orientation of the new prism in the Build/Modify a prism section. Click the Add a prism button.

modify an existing prism in the model list

Select the number of the prism to be modified in the anomaly list. The prism number is in the first column.

Specify the new prism parameters and click the Modify a prism button.

apply the same values for a group of selected prisms

Click the Set density to all selected prisms button to modify the density. Click the Set angles to all selected prisms button to modify the angles. Click the Set size to all selected prisms button to modify the size.

delete prisms from the model list

F

Help

Select the prisms to be deleted in the anomaly list. Click Delete all selected prisms

<u>C</u>ancel

import a model from another data set in the current database

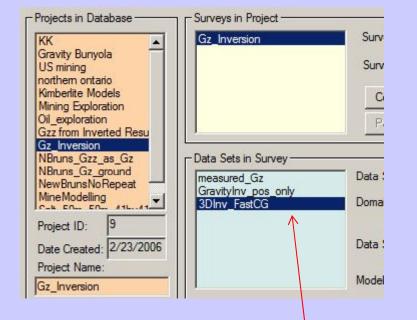
Click **Import a model**.

Select the project, survey, and data set with the desired model Click **OK** and the model will appear in the **Starting anomaly list**

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

	version				<u></u> [
	taset(s) to do inversion	-1	1	- 1	- Inversion Method	
<u># </u>	Dataset Processed	Survey Ground Gravity	Project GroundGravity	Add	Linear Fast CG (Matrix) Linear Slow CG	
	FIUCESSED	alound dravity	aroundarawiy	Weights	Non-Linear CG	
				<u>B</u> emove	Inversion Parameters	
mponen	t List	Survey area information				
‡	Receiver	Item	Value		Use Initial Model	
21	Gz	Center X (m) Center Y (m)	588500.0000 6471100.0000			
		Size X (m)	11700.000		Set Initial Model	
		Size Y (m) Horizontal Angle (Degree)	6200.000			
		Average Distance Between Lir	nes (m) 100.000		🔲 Use known geological structure	
		Average Distance Between Lo	cations (m) 301.076		California	
Co	efficient Setting	Select	t Survey Area		Set Structure	
rch Volu	me				Use topography information	
	ine .					
enter X (i	m) 588500	Center Y (m) 6471100) Top Z (m)	0	Remove Grid Cells	
	14000	C	100 Thickness (m)	3000	Distance (m) 840	
ize X (m)	14000	Size Y (m)	400 Thickness (m)	13000		
orizontal	Angle (degree)					
	wise from East	0 Sele	ct Search Area	Cell Sampling	Inversion Message	
Grid Setti	nas				Inversion Message	
Cells in >		IY Cells in Z	Total			
25				-		
25	77	5	9625			
Spacing	Z direction 🕝 🔥	С д.2 ^{ін} С Ді Де	efine Top cell thickness	(m) 600		
			eine			
	Set Output Log File Name		Get Settings From a Log Fi	e	Initial model misfit	
	- ing in a sign in a stalling					
ress						
	Close applicatio	on when inversion		Course 1		
	completes	<u>+</u>	lun	<u>C</u> ancel	<u>H</u> elp	

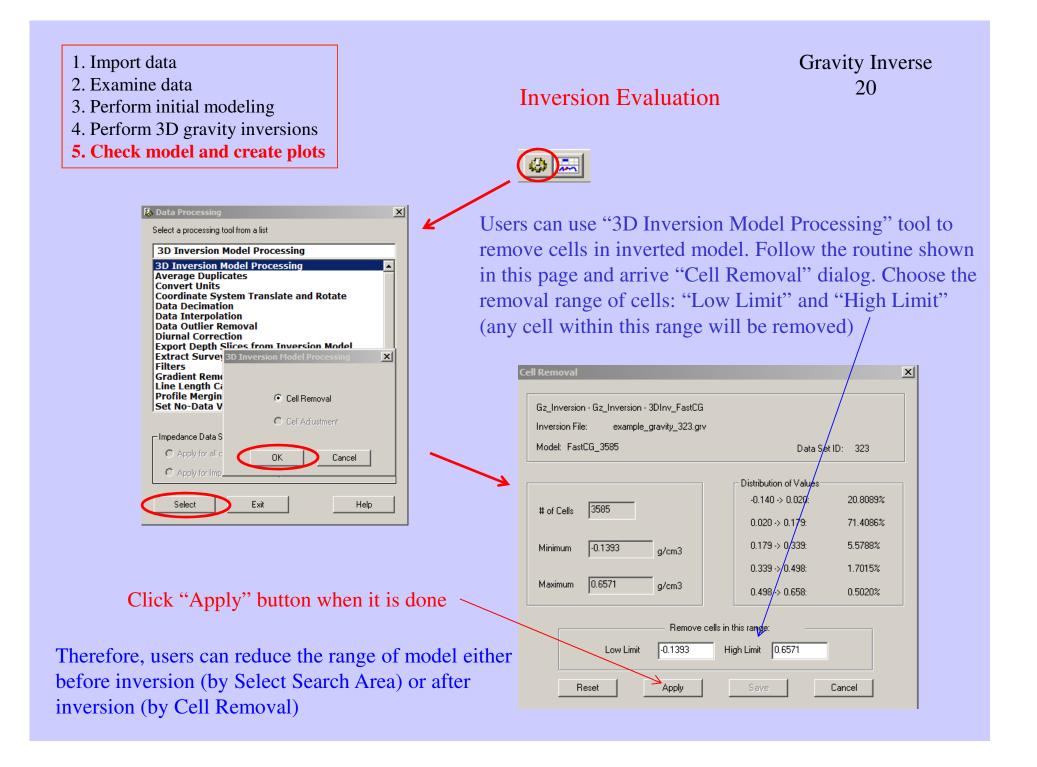
1 7

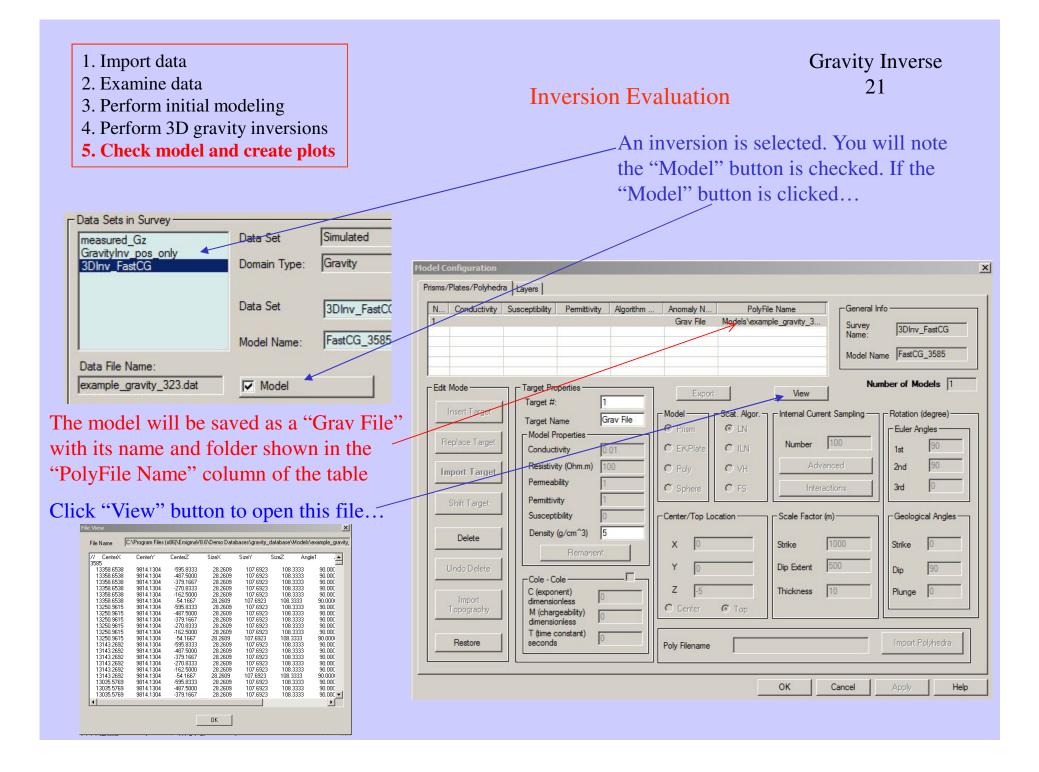

• After settings are done, press $\underline{\mathbf{R}}\mathbf{u}\mathbf{n}$ button to start the inversion process.

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

Executing the Inversion

avity Inversion lected dataset(s) to do inversion—					
# Dataset	Survey	Project	Add	Inversion Method	
1 measured_Gz	Gz_Inversion	Gz_Inversion		Linear Slow CG	
			<u>₩</u> eights	Non-Linear CG	
			Remove		
			House	Inversion Parameters	
iomponent List	Survey area information		1		
# Receiver ▼1 Gz	Item Center X (m)	Value 12712.5000		🗖 Use Initial Model	
	CenterY(m) SizeX(m)	10450.0000 1100.000		Set Initial Model	
	Size Y (m)	1175.000			
	Horizontal Angle (Degree) Average Distance Between Lines (m)			Use known geological structure	
	Average Distance Between Location	s (m) 25.000			
Coefficient Setting	Select Surve	v Area		Set Structure	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
arch Volume				Use topography information	The right windo
Center X (m) 12712.5	Center Y (m) 10450	Top Z (m)	0	Remove Grid Cells	(in white) shows
,		_		Distance (m)	
Size X (m) 1300	Size Y (m) 1400	Thickness (m)	650		each data point's
Horizontal Angle (degree)					progress.
Anti-clockwise from East	90 Select Sea	rch Area (Cell Sampling	Inversion Message	p10g1033.
Grid Settings				Data Misfit 4.37%	
Cells in X Cells i	in Y Cells in Z	Total		Least Squares Misfit 3.4404	
46 13	6	3588		Data Misfit 4.28%	
		,		Least Squares Misfit 3.3324 Iteration 20	The "Progress"
Spacing Z direction 💿 🛆	$\mathbf{C} \Delta 2^{irt} \mathbf{C} \Delta_i \text{Define}$	Top cell thickness (m)	108.333	Data Misfit 4.21% Least Squares Misfit 3.2243	
		-		Recovering data Write data to database	shows the total
			1	Initial model misfit	progress of this
Set Output Log File Name		Get Settings From a Log File			
					inversion.
Close applicat	tion when inversion	1	Canaal	Hala	
I™ completes	<u>B</u> un		<u>C</u> ancel	<u>H</u> elp	

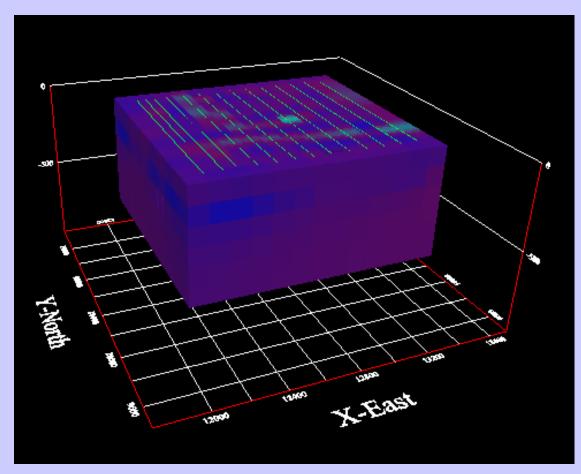

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

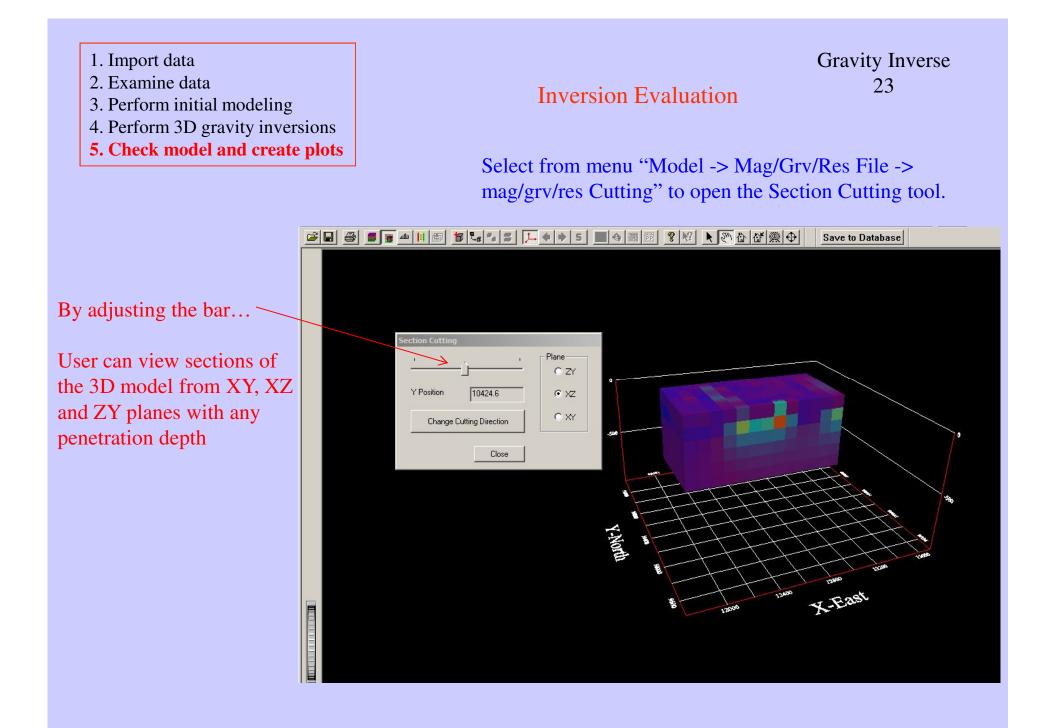


Inversion Evaluation

In each survey, there will be several data sets after modeling, inversion and processing. In this case, we have one half space model and one 3D inversion model. Each forward model has a new data set containing the simulated data under the model. Similarly, each inversion contains a new dataset containing the simulated data set under the inversion model (for each point) and attached to that data set is the inversion model.

Our 3D gravity inversion model dataset

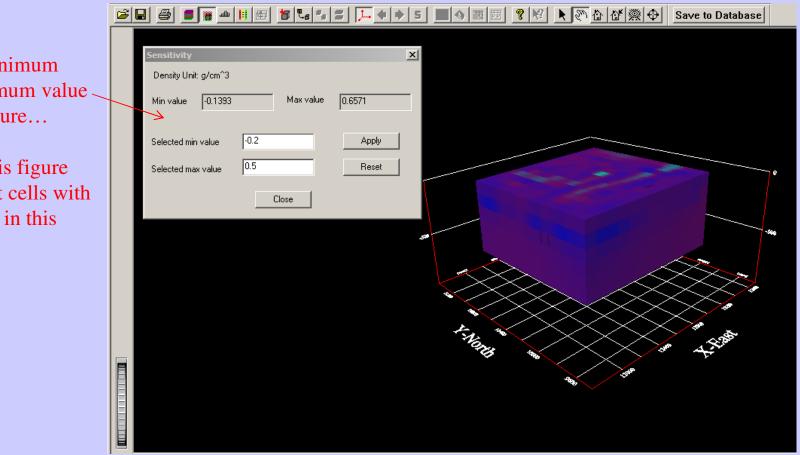




- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

Gravity Inverse 22

Click viz button to open Visualizer tool to view the inverted 3D model...



- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- **5.** Check model and create plots

Gravity Inverse 24

Select from menu "Model -> Mag/Grv/Res File -> Sensitivity" to open the Section Cutting tool.

By adjusting minimum value and maximum value $\$ shown in the figure...

The model in this figure will only exhibit cells with values specified in this range

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- 5. Check model and create plots

Database Survey Review Data C	orrection Data Reduction	
Projects in Database	Surveys in Project	
KK	Gz_Inversion	Survey N
Gravity Bunyola US mining northem ontario		Survey II
Kimberlite Models Mining Exploration Oil_exploration Gzz from Inverted Resu		Copy Paste
Gz_Inversion NBruns_Gzz_as_Gz	Data Sets in Survey	
NBruns_Gz_ground NewBrunsNoRepeat	measured_Gz	Data Set
MineModelling	GravityInv_pos_only 🖌 3DInv_FastCG	Domain Ty
Project ID: 9		Data Set
Date Created: 2/23/2006 Project Name:		Data Sol
Gz_Inversion		Model Nar
Change Name	Data File Name: example_gravity_323.dat	E. Madel
Delete Project	Jexample_gravity_525.dat	Model

Gravity Inverse 25

To assess the success of the inversion, select the measured data and then select

the plotter.

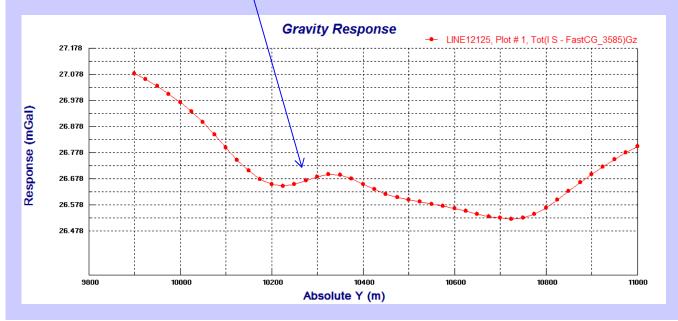
Load Data S	et	×
?	Do you want to compare with other Data Sets?	
Yes	No Load Settings Cancel Help	

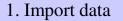
Select "Yes", if this dialog is appeared

1. Import data

2. Examine data

- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- **5.** Check model and create plots

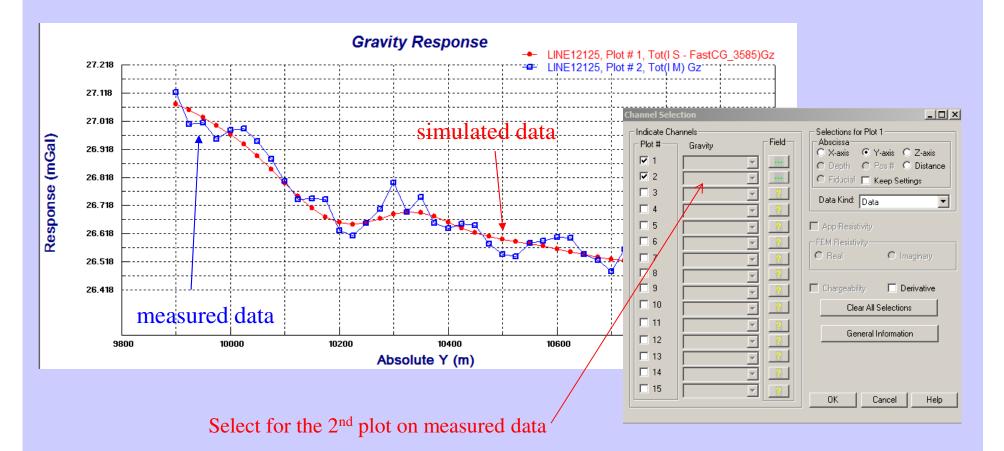

Inversion Evaluation

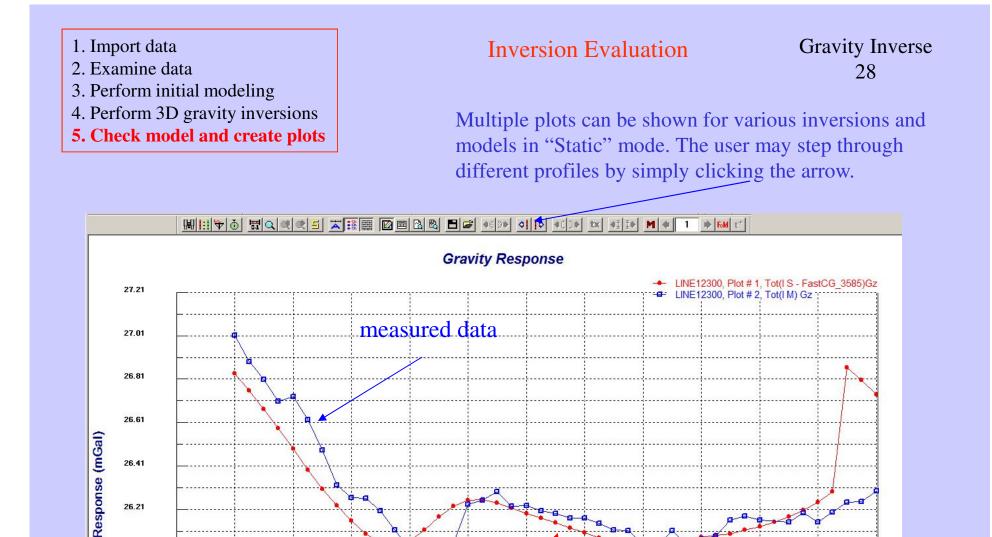

Gravity Inverse 26

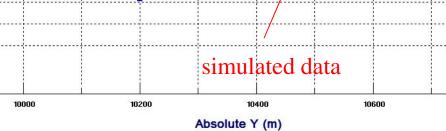
Select the data sets required for comparison and then click "Load"

Name	Model Name	Туре	Data Units:	Name	Model Name	Ту
GravityInv_pos_only	GravInv_20954	S	mGal	3DInv_FastCG measured_Gz	FastCG_3585	S M
			Add to>			
			Add All to>			
			< Remove from			
		г	Show IMPEDANCE Data	Sets in Survey		

All selected data sets are then loaded to the Plotter application and the plot appears showing the simulated data of the first profile.






- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D gravity inversions
- **5.** Check model and create plots

Gravity Inverse 27

The user may select other data sets to plot by simply double clicking on the plot

11000

10800

26.01

25.81

9800