3D MAGNETIC INVERSION TUTORIAL

Steps: Page 0.Introductions 1 1. Import data to new or existing database 3 2. Examine data 7 **3.** Perform initial forward modeling 9 4. Perform 3D magnetic inversions 10 5. Check mode and create plots 22

Magnetic Inverse

Introduction

Magnetics is often lumped into the term Potential Fields and understood to be like gravity data. But, magnetics differ greatly from gravity. First, the magnetic fields are governed by very different equations than gravity and these equations are actually analogous to DC resistivity. We try to incorporate these differences in EMIGMA.

First, the source field for a magnetic survey is a regional magnetic vector field. Whereas, gravity is defined by a virtually homogeneous field which is only vertical at the surface and defined only by the distance from the center of the earth. While, there are regional and local gravity variations, they effect little the measured fields. The magnetic fields are affected by regional and well as local structures. To deal with this, EMIGMA considers the total response and not just the residual. It is thus important to pay attention to the corrections for temporal variations as well as considering the bulk regional field.

It is important to consider the first stage of corrections. It is often thought that only the diurnal variation correction is important but the temporal variations consist of both an internal component (diurnal) as well as an external variation due to atmosphere effects most commonly thought of as the magnetotelluric source field. As such, a simple subtraction of the base station measurement in problematic as these changes are due to the diurnal variation, the external signal and cultural noise at the base station. We thus suggest first processing the base station data in EMIGMA to delete obvious cultural noise and to remove the external high frequency noise by filtering prior to performing the diurnal correction removing only the variation in this final effect.

Using the total field measurement after corrections allows one to estimate the regional source field. While this will be similar to the IGRF, there will always be a difference in the average field to the IRGF amplitude. Only by measuring three component data can one estimate the actual inclination and declination of the regional field.

If your data is automatically reduced by the base station, we suggest to add the average base station response to your data before import. If the base station values are not available from the instrument manufacturer then the only alternative is to determine the IGRF and add this to your data before import.

12/13/2022

1. Import data

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Browse and select .qct or .xyz data file for import This first example is an older data set on a grid without GPS information or Latitude/Longtitude.

Raw Data Formats	Other Sources		O QCT format	XYZ ASCII format	
	Data Groups	File View	<i>r</i> :	Select one line as the header line	
	C EM Potential Field IP/Resistivity DC Magnetics (ground, marine or airborne) - vector, TMI or gradient Gravity (ground, marine or airborne) - scalar or tensor Scintrex Magnetic Ground (XYZ++ format) Geosoft Grid File (Potential Field) Generic Borehole (magnetics and gravity) - vector, TMI Crone (Borehole Magnetic) - vector Cone (Borehole Magnetic) - vector OK Cancel Help	Data S	D X GRID Y MAGDATA M 98600 48 35940.57 36000 58095.1 49 35953.2 36012.5 58089.1 51 35965.82 36025 58079.4 52 35978.45 36037.5 58045. etting UTM_X: GRID_X UTM_Y: GRID_Y Z:(Altitude) 1.1 GPS_Z: (m) Foucial : Line Label	88 81 42 .75 	Set Header Load Header
ct data file co	olumns corresponding to coc	ordinate		< Back	kt > Cancel

Click "Next" button to proceed to the next step

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions

LINE

98622.51

BTotal

Units

•

5. Check model and create plots

Select column name for magnetic data

In this case, there is only total field data and 1 sensor.

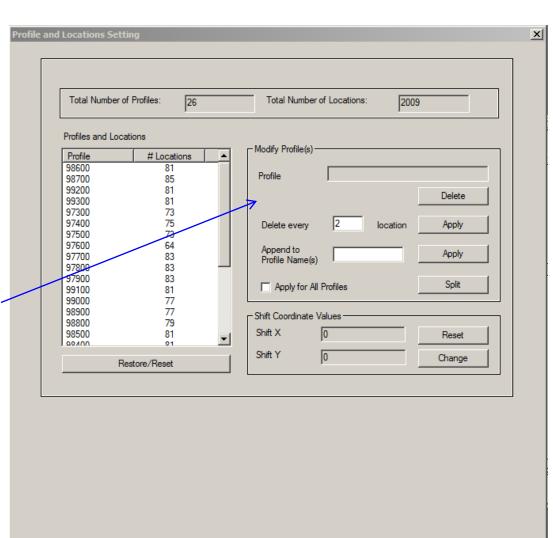
Select unit for imported data

X GRID X GRID Y MAGDATA MAGDATA(SENSOR2) 98600 98622.48 35940.57 36000 58095.88 98622.49 35953.2 36012.5 58089.81 35965.82 36025 58079 42 98622 52 35978 45 36037 5 58045 75 98622.53 35991.08 36050 58021.02 98622.55 36003.71 36062.5 57990.87 8622.56 36016.34 36075 57948.79 J. 98622.58 36028.96 36087.5 58312.7 - Magnetic Field · Derivative of Btotal Multiple Sensors GRID_X -🗖 In-Line MAGDATA(SENSOR2) Sensor1 • Cross-Line GRID_X -GRID_X -□ Sensor2 Vertical -GRID_X GRID X -☐ Sensor3 **v** GRID_X □ Sensor4 Vectors -GRID_X Sensor5 GRID_X $\overline{\mathbf{v}}$ ☐ In-Line GRID_X -☐ Sensor6 Cross-Line GRID X $\overline{\mathbf{v}}$ ☐ Vertical GRID X nT •

< Back

Next >

Cancel


Help

12/13/2022 lick "Next" button

Magnetic Inverse 3

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Show profile information, users can perform delete/reduction/shift operations on profiles in this dialog if desired but these tools are available once the data is inside EMIGMA.

Next >

Cancel

Help

< Back

Magnetic Inverse 4

12/13/2022 Click "Next" button

1. Import data

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

You must determine the nature of the earth's magnetic field in the area of your survey. While the magnitude of the regional field may be estimated from your data, the angle of the field defines the internal magnetization of the susceptible structures. The regional field is described by the IGRF model.

if you data file did not have Lat/Long information, enter it into the fields shown along with approximate GPS elevation.

As the earth's field is not stationary but is slowly varying, you must enter the approximate date of the survey.

Click Process the Set

	Total Number of Profiles: 26 Total Number of Locations: 2009						
	Profiles and Locations nclination/Declination/Intensity Setting	×					
	Options C Determine from data file or Latitude/Longitude user input C User input for Inclination, Declination, Intensity						
	Parameters (Average values from data file) Date [74.1 Latitude (deg) N C S [61.65 Longitude (deg) C E © W 100 Height above mean sea level (m) 24 Date 2000 Year 6 Month 24 Date Coordinate Frame						
	IGRF Values						
	Reset Values Process 84.2665 Inclination downward from horizontal (deg) -52.155 Declination East of North (deg)						
	Cancel SET 56326.1 Intensity (nT)						

12/13/2022 Click "Next" button

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Click "Run Import" button to start import data into the database

averaging and sorting may be carried out late once the data is imported

After processing is done, click "finish" button to complete the procedur/a 3/2022

Magnetic Inverse 6 Hagnetic/Gravity Import Step 3: Import data to database X - Earth Field System Inclination downward from horizontal (in degrees) 75 East of North (in degrees) 20 Intensity (in nT) 52500 Central Meridian (in degrees) Set Coordinate System Horizontal: X horizontal along profile, Z vertical -Import to the Database Project Name : Lr1mag head Survey Name : Store LINE....98400 . Store LINE....98000 Store LINE....98200 Average duplicates Store LINE....98100 .98300 Store LINE ... Sort locations Store LINE98250 Store LINE....98350 Store LINE....36800 Store LINE....36000 Run Import .components....creating. locations.....creating Add New Line Processing Completed

+> Finish

Cancel

Help

< Back

2. Examine data

- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

1. Check database for the survey

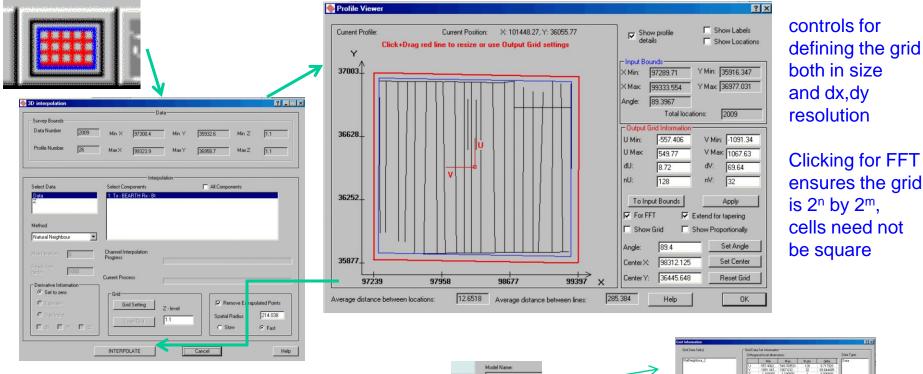
Gravity GeonicsFixedLoop MegaTEM Az VTEM AeroTem Compensation Aribome EM data Gravity Borehole Mag TEM stepprocessing	Total Field Surface
Case_Study_Mag ip_example mag_airborne	dumontord_m2Meas perm_fix Model
Project ID: 5	
Date Created: 3/11/2004	

2. Click configuration

mining	_training_66.dat	
iiiii iii ig	_training_oo.uat	
	Configuration	
	Configuration	

Magnetic Inverse ofiles Waveform Tx-Rx Output Sustem Tune Natural Absolute: Parallel to absolute system 3. Check system configuration ransmitter input ----Coord System: Absolute: Parallel to absolute system • Comp Receiver Input ange Prof Rame Solic Hulle of Solic Hulle of Solic Hulle of Frontis ок | Cancel A Serilacation ■ L L ④ 乳 電話 图 Q 別 X / 0 + Ⅲ / / ● ■ / A X M 处 B B BASE 3700 S Edit Location Coordinates Edit Model Coordinate ≝⊇ Undo Save Changes

4. Check lines and stations by clicking "Survey Editor" button *****


This tool is a data analyzing, editing and mapping tool. - profiles may be deleted, modified, renamed, datapoints moved, deleted, and maps maybe underlaid or constructed

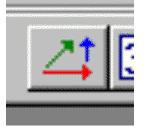
Import data Examine data gridding, processing

- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

An important aspect of potential field analyses is done through FFT analyses by which you are able to start to understand the nature of the structure and thus better to control the inversion process.

Interpolate or "grid" the data. In this process, the data is interpolated onto a grid of data vertices defined by a rectangular cell.

After interpolating, the grid is attached to the dataset in the database as indicated by a check mark as here grids are stored for easy access

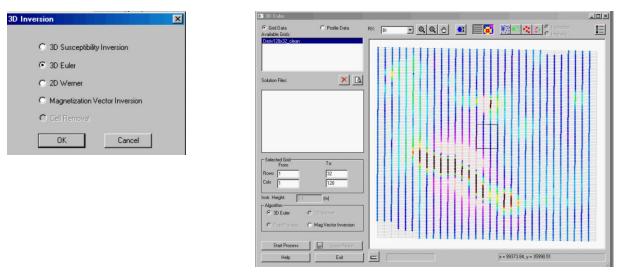

ind Data Sat(s)		ta Set Informatio Ional local dimen				Data Type:
NatNeighbour_2		Min	Max	Noto	delta	Data
	U V Z	-557.4062 -1091.343 1.100000	549.769531 1067.632 1.100000	129 32 1	8.717929 69.644405 0.000000	
	1	and of God		_		Statistics
Init Date Set Cathoghbor, 2 Delete Gaid Related to: Project RETPAGE RETPAGE		36445.6484371	[89,4			
Data Set Measured Static				-		

Import data Examine data gridding, processing

- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Creating Derivatives and other FFT processing and Their role in inversion.

1. Having interpolated the data to a regular 2^N x 2^M grid, we may now processing derivatives and with these derivatives perform other processing functions.


erivatives of DC magnetic	data			×
Dataset name: Measured	Static	Output grid's nam	e: Der	iv128x32
Attached Grid NatNeighbour. 3 Deriv128x32_clean Note: Only one grid can be selected.	Components 1 Bt Note: Multi components can be selected.	Nx: 128 Ny: 32	oundary X Min (m): X Max (m): Y Min (m): Y Max (m):	-557.406 549.77 -1091.34 1067.63
Settings for computation Tapering Tukey (cosine bell) window ax = 10 2 ay = 10 2 Use Wave Number Filter Elter settings	Upward/Downward Continuation Continuation settings Reduce to Pole Reduce to Bole Metho	Cleani Store	derivatives ng grid data to datat ssful comple	base.
	<u>C</u> los	e		Help

Grids which may be utilized for FFT processing are displayed in the upper left hand and the contents of these grids in the box beside. Various different processing may be carried out here, but here we simply show generation of the 3 derivatives of the total field. These $\frac{12}{13}$ and $\frac{12}{13}$ and $\frac{12}{13}$ and $\frac{12}{13}$ and $\frac{12}{13}$ are be utilized in the inversion process in a variety of ways.

2. Examine data gridding, processing

- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Case 1: Use the derivative grids to perform 3D Euler solutions. 1.

Through this interface, you may perform various aspects of the 3D Euler solutions. Results are then viewed in either GridPresentation or the Visualizer.

These tools allow you to determine the types of the 3D structure as well as depth estimates.

Use of Derivatives in Inversion – 3 examples.

Magnetic Inverse

10

12/13/2022

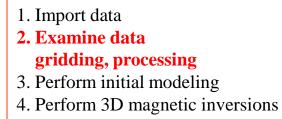
2. Examine data gridding, processing

- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Case 2: Export derivatives for use in 3D inversion 1.

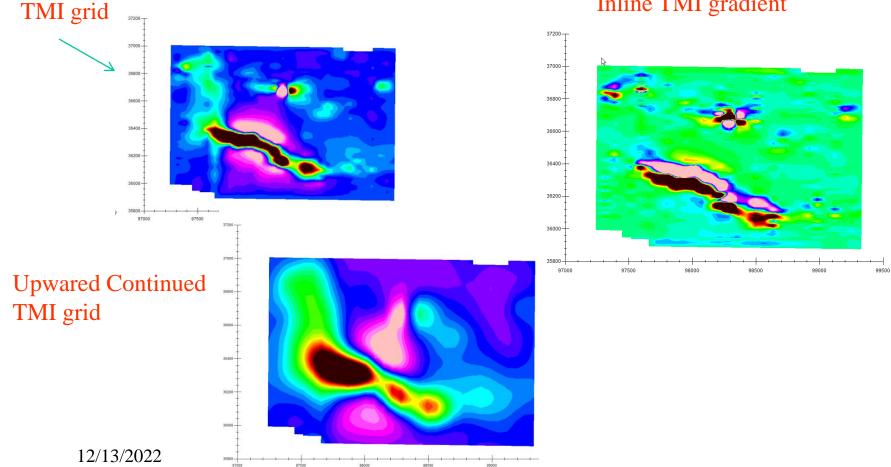
derivative grid Grid Information ? × Grid Data Set(s) - Grid Data Set Information Orthogonal local dimensions: Data Type: NatNeighbour_3 Deriv128x32_clear Min Max N ptn delta Data -557.4062. 549.769531 128 32 8.717920 69.644405 1091 343 1067.632. 1.100000 1.100000 0.000000 Statistics - Centroid of Grid-Counterclockwise Components: orientation of local Data Created: 6/27/2016 4:42:50 P X: 98312.125 Tx - BEARTH Rx - BTotal U-axis w.r.t. to global X-vector (degree): Y: 36445.648437 Grid Data Set Z: 1.100000238 2. Tx - BEARTH Deriv128x32_clean Change Name 89.4 Rx - BTotalx ID: Delete Grid 3. Tx - BEARTH Rx - BTotaly - Related Project LR1 Magnetics 4. Tx - BEARTH Rx - BTotalz LR1RMAG Survey Measured Static Data Set Measured Data Set Domain Type: Static Export to Profile Data Set Export to Geosoft (grd) 2 Exit Export to xyz-file Remove Extrapolated Points Difference of grids Export to gct-file Help Set Uutout Profiles

Export derivatives.


Use of Derivatives in Inversion – 3 examples.

Export TMI and derivatives to a set of profiles

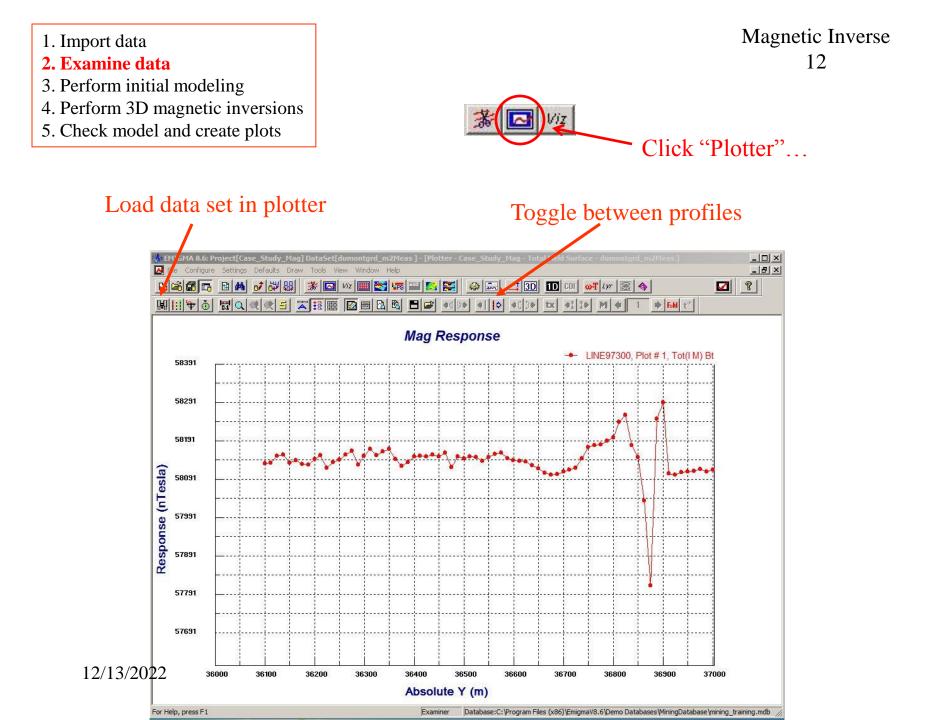
or


Export derivatives by interpolation to be added as additional channels to your original data.

Use Grid Nodes for Lines and Stations Export derivatives to Original Stations	
Export derivatives to Original Stations	and Stations
	inal Stations
ОК	7

5. Check model and create plots

Case 3: Examination of Derivatives and Upward Continuation 1.

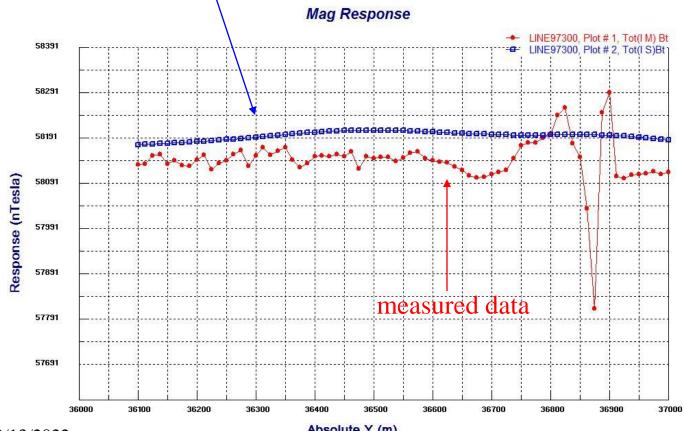


Inline TMI gradient

Use of Derivatives in Inversion – 3 examples.

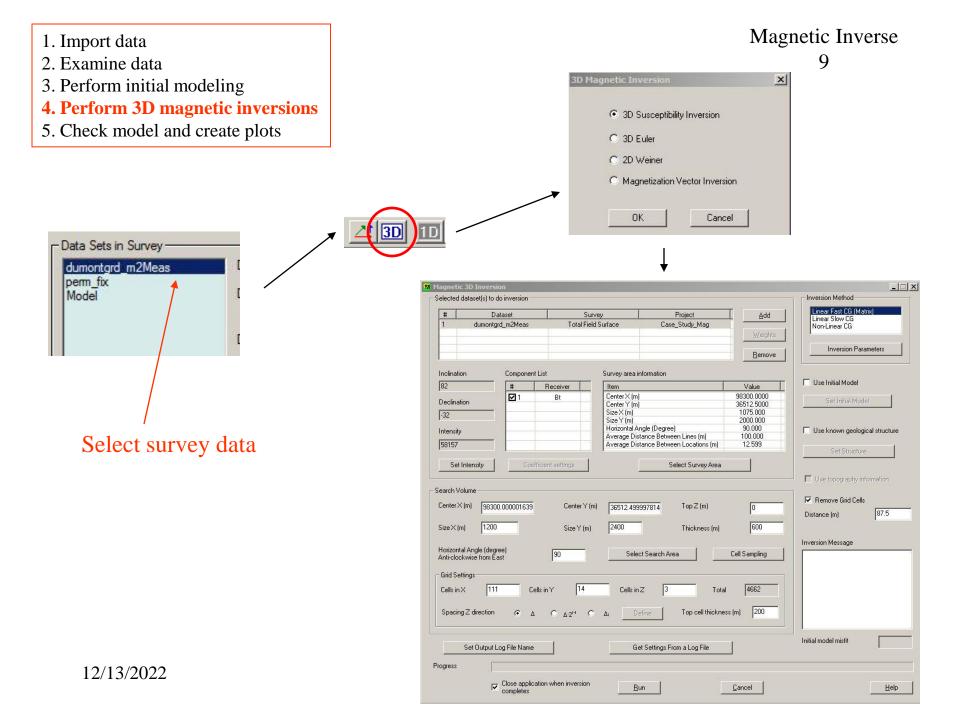
Magnetic Inverse

11



1. Import data 2. Examine data **3.** Perform initial modeling 4. Perform 3D magnetic inversions 5. Check model and create plots

Magnetic Inverse 8


Note: *Performed some initial modeling to get a "feel" of* the data and estimate parameters of initial model for inversion.

simulated data with a forward model

12/13/2022

Absolute Y (m)

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

	Dataset	Survey		roject	Add	Linear Fast CG (Matrix)
<u>+ </u>	Mag3DInv FastCG	Total Field Surfa		Study Mag	800	Linear Slow CG
	Magapiny_rasica	Tutai Fiela Sulta		study_may	Weights	Non-Linear CG
					weights	
					Remove	Inversion Parameters
					<u>– Hemove</u>	
clination	Component List	t Su	rvev area information			
2			em		Value	Use Initial Model
<u>_</u>			enter X (m)		8300.0000	
clination	1		enter Y (m)		86512.5000	Set Initial Model
2			ize X (m)		1075.000	
۷		S	ize Y (m)		2000.000	
ensity			orizontal Angle (Degree)		90.000	🔲 Use known geological structure
			verage Distance Betweer		100.000	
8157		A	verage Distance Betweer	Locations (m)	12.599	Set Structure
	<u>, 1</u>	1			1	
Set Int	ensity Uperficie	ent settings	5ek	ect Survey Area		
						Use topography information
ch Volu	me					
						Remove Grid Cells
nter X (m	n) 98300.000001639	Center Y (m)	36512.499997814	Top Z (m)	0	
		1				Distance (m) 87.5
ze×(m)	1200	Size Y (m)	2400	Thickness (m)	600	
	,				,	Lucration Management
rizontal 4	Angle (degree)					Inversion Message
	vise from East	90	Select Search Area	Ce	ll Sampling	
rid Settin	igs					
na ootan	111 Cells ir	1Y 30	Cells in Z 5	Total	16650	
			Censin Z Ju	rotal	10000	
	Celis in				-	
ells in X						
ells in X	Z direction (● △	С д.2 ^{ін} С Ді	Define	Top cell thickness (m) 120	
ells in X		С _{А'2ⁱ⁻¹} С А _i	Define	Top cell thickness (m) 120	
ells in X		Ο Δ-2 ⁱ⁻¹ Ο Δ _i	Define	Top cell thickness (m) 120	
ells in X pacing Z	2 direction r A	Ο Δ.2 ⁱ⁻¹ Ο Δ _i) 120	Initial model misfit
ells in X pacing Z		Ο <u>Δ</u> ·2 ⁱ⁺ Ο Δ _i	Define Get Settings From) 120	Initial model misfit
ells in X pacing Z Si	2 direction r A	Ο <u>Δ</u> 2 ^μ Ο Δι) 120	Initial model misfit
ells in X pacing Z	2 direction r A) 120	Initial model misfit

Magnetic Inverse 10

Selected Data Sets

A dataset may be added for use in the inversion by clicking **Add**. Each dataset is given equal weight by default. This can be changed by clicking **Weights**.

Components

Components that will be used in the inversion are displayed here.

Log File

A log file is created each time an inversion is run. The name and location of the log file can be specified by clicking **Set Output Log File Name**. Click **Get Settings From a Log File** to use the settings from a previous inversion.

Use topography information

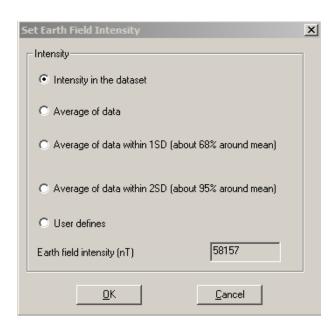
This option will be enabled if you imported your data with a gps z

channel. Select this option and the gps z values will be used when performing the inversion. When loading inversion results to the visualizer, a window will appear asking to display the survey according to z or gps z. Select gps z to see the inversion results with topography.

Remove Grid Cells

Any cells that are beyond the specified **Distance** from the closest data point will be removed from the inversion result.

Geological Structure


Click **Use known geological structure** to define a structure that will apply constraints to the inversion result.

Initial model misfit

Defines how close the initial model fits the data. The closer the value is to 0, the better the fit.

2. Examine data

- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Coefficient settings

This button will be enabled when gradient data is available and more than one derivative has been selected (not in this example). It launches the following window where a weight can be assigned to each anaitable derivative.

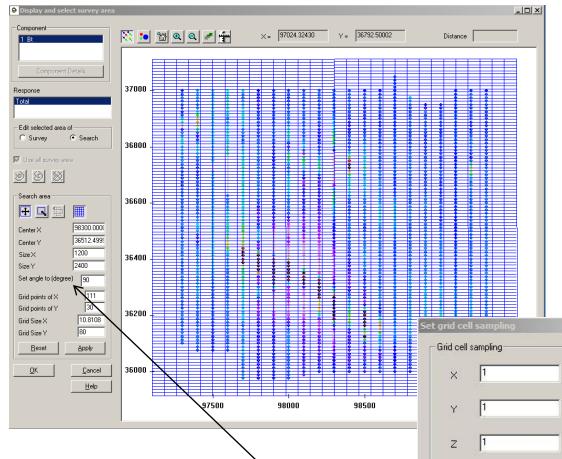
Magnetic Inverse 11

Earth's Background Field

You can choose between various methods to obtain a value for the background field by clicking **Set Intensity**. **Intensity in the dataset** - uses the value defined in the selected survey.

Average of data - the value will be calculated from the data. The amount of data values used for the calculation depends on the option chosen.

User define - simply enter a new value in the field intensity box.


Coefficient Settings for Derivatives	×
Relative contribution between the deri	vatives
dBt/dx contribution	1
dBt/dy contribution	1
dBt/dz contribution	1
ОК	Cancel

12

1. Import data

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Clicking either the **Select Search Area** or **Select Survey Area** buttons launches the same window. But search area means the area of data which the inversion algorithm works on, while survey area is the whole part of the imported data.

If change the value in "Set angle to (degree)" box, the angle between search area and survey area will be changed accordingly

Survey Area

Click the Select survey area button to launch the graphical tool which enables you to specify the data points that will be used in the inversion calculations.

Search Volume

The default parameters in the **Search Volume** section will create a grid that covers the entire survey. You can modify the search area parameters by entering new values or by using the graphical tool

Cell Sampling

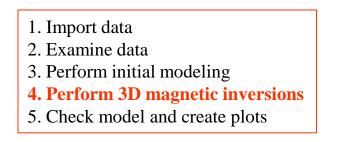
×

Cancel

0K

Grid cells defined in **Search Volume** can be divided into smaller units when calculate the simulated data by clicking **Cell Sampling.** Type your values in the **X**, **Y** and **Z** boxes to specify the number of samples in the X, Y and Z directions

 Import data Examine data Derform initial modeling 					М	lagnetic Inverse 13
 Perform initial modeling Perform 3D magnetic inversions Check model and create plots 	- Grid Cell Setting Cells in X	ps (along grid axis) — Cells in Y	29	Cells in Z 25	Total 135575
	Cell Size X	10	Cell Size Y	100	Top cell thickness (m) 36
	Spacing Z dire	ction 💿	Δ Ο <u>Δ</u> ·2 ⁱ⁺¹	Ο Δ;	Define	Cell Sampling


Edit the search g	rid cell thickness		×
Note: Depth displa	ayed here is relative to the gro	ound level.	
Total thickness	90	10	
Total thickness	lac	10	Top Depth
Total thickness af	ter modification 85	i8	0
			,
Search grid cell	thickness		
- Index	Thisburger	Dellars Deelle	
Index	Thickness	Bottom Depth	
1	10.0000	-10.0000	
2	10.0000	-20.0000	
3	10.0000	-30.0000	
4	36.0000	-66.0000	
5	36.0000	-102.0000	
6	36.0000	-138.0000	
7	36.0000	-174.0000	
8	36.0000	-210.0000	
9	36.0000	-246.0000	
10	36.0000	-282.0000	
11	36.0000	-318.0000	_
12	56 0000	254,0000	
Thickness (m)	10	Insert Index	1
Modi	fy the selected	Insert a th	ickness
	Delete the se	elected	
Mater Multi-Levi			
Note: Multiple	thickness items can be selec	ted.	
	<u>0</u> K	<u>C</u> ancel	<u>H</u> elp
12/13/20	22		

Grid Settings

Confirm the number and layout of grid points to be used in the inversion in the **Grid Settings** area. The points will be evenly spaced in the x and y directions. Choose Δ for evenly spaced points in the z direction or $\Delta \cdot 2^{i-1}$ for exponentially spaced points. You may specify a custom spacing by selecting Δ_i . Your custom settings can be later modified by clicking **Define**.

Editing the Grid Cell Thickness

The interface displays the total thicknesses before and after editing as well as the topmost z value. The cell sizes are listed in the **Search grid cell thickness** section.

Trust Region Non-Linear CG	
Inversion Parameters	

Inversion Methods

There are two inversion methods to choose from. Set parameters for your chosen technique by clicking the Inversion Parameters button.

Trust Region - Faster than Non-Linear CG and has better handling of model constraints. It is a constrained minimization technique and can efficiently process large number of data points and inversion grid cells.

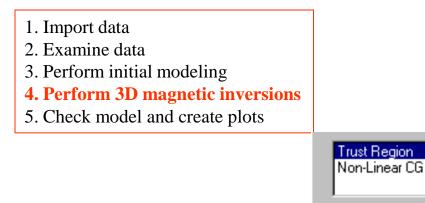
Non-Linear CG - General concept is to start with an initial guess and go looking for the best fitting model by minimizing a given function using an iteration process. It is a unconstrained minimization technique with the constraints on the interface applied as a post-process.

Import data
 Examine data
 Perform initial modeling

4. Perform 3D magnetic inversions

5. Check model and create plots

Trust Region Non-Linear CG	
Inversion Parameters	


Magnetic Inverse 15

The objective function

Assumes that the forward function can be linearized.

d= F m d: vector of N dimension F: matrix of N×M dimension m: vector of M-dimension N: number of observation M: number of inversion grid cells

$$H_{ext}(r) = \int G(r,r')J(r')dr'$$
$$J(r') = (m(r') - m_0)H_{ins}(r') = \chi(r')H_{ins}(r')$$

Inversion Parameters

Constrained Trust Region Technique

At an iterate, when a region around is defined, a quadratic model within this region is checked for an adequate representation of the objective function. If a notable decrease of the objective function can be achieved within the region, then the model is believed to be a good representation of the original objective function and the region is expanded. If the improvement is too subtle, then the model is not to be believed as a good representation of the original objective function within that region and the region is contracted.

$$\phi(m) = \lambda \phi_d(m) + \phi_m(m)$$

 $\phi(m)$ - functional to be minimized $\phi_d(m)$ - data misfit

 $\phi_{\rm m}({\rm m})$ - model misfit

$\lambda\,$ - Lagrangian multiplier - regularization weight

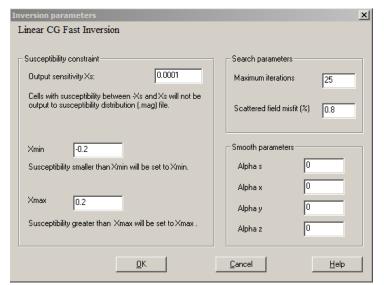
12/13/2022

Magnetic Inverse 16

Trust Region Technique

- fast convergence rate
- constrained
- can efficiently process large number of data points and cells

Smooth model misfit function $\phi_{m}(m) = \alpha_{0} \int w^{2}(z) [m(r)-m^{0}(r)]^{2} dv + \sum_{i=x,y,z} \alpha_{i} \int [w(z) \nabla_{i} (m(r)-m^{0}(r))]^{2} dv$


 α_I - weighting factors w(z) - depth weighting

2. Examine data

3. Perform initial modeling

4. Perform 3D magnetic inversions

5. Check model and create plots

Constraint of Susceptibility

Output Sensitivity Cells with susceptibility |D| (close to 0 - where the user defines how close) are constrained or thrown out after each iteration. will not be output to the susceptibility distribution (.grv) files

Xmin Upon completion of iteration, X values less than Xmin will be set equal to Xmin

Xmax/13/2022 Upon completion of iteration, X values greater than Xmaz will be set equal to Xmax

Magnetic Inverse 17

Search Parameters

Maximum Iterations

User defines the number of iterations the program will run to generate the final solution. In general the default (25 for Linear Fast CG and about 15 for the others) is sufficient for the inversion.

Scattered field misfit

Defines the "stop" criteria for an iteration when the difference between the measured and simulated scattered field falls within a certain percentage of the measured value.

Smooth parameters

Larger values will increase the smoothness of the inversion result. Alpha s decreases the range of all the susceptibility values. Alpha x, y and z decreases the difference between the susceptibility of two neighboring cells in the x, y and z directions respectively.

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Name	ID	Name		ID	Name		ID	Mode	el Name
Ground Mag	32		Field Surface	141	perm_fix		528	1100	arreditio
Air Mag	29		ion and Filtering	142	3DInv_TrustRegion		606	Trus	£3779
Near Surface - Mag	15		ted Grid	143	3DInv_TrustRegion		607		10102
Vear Surface - Shell B6	14	Enpore	od dild	140	3DInv_TrustRegion		609	Trust	38502
Vear Surface - Concrete					Model target		841		el target
Case_Study_Mag	39				intedertenget				a taiget
(]	1.1	<u>ا نے</u>							
	Tune	L (CI)	Ten Y	Ten Y	L Teo 7	Ctrike Length			omalies 1
nomalies Name	Туре	k (SI)	Top× (m)	Top Y (m)	Top Z (m)	Strike Length (m)	Dip	mber of An Extent (m)	omalies 1 Thickness (m)
Name	Type Prism	k (SI) 0.1					Dip	Extent	Thickness
Name			(m)	(m)	(m)	(m)	Dip	Extent (m)	Thickness (m)
Name			(m)	(m)	(m)	(m)	Dip	Extent (m)	Thickness (m)
nomalies Name arget			(m)	(m)	(m)	(m)	Dip	Extent (m)	Thickness (m)

Initial Model

Click the checkbox labeled **Use Initial Model** to specify an initial model. Return to the initial model window by clicking the **Set Initial Model** button.

The starting model is described by a list of prisms with various properties in the box labeled **Initial Model**.

import a model from another data set in the current database

Click Import a model.

Select the project, survey, and data set with the desired model Click **OK** and the model will appear in the **Initial Model**.

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions

171

5. Check model and create plots

Magnetic 3D Inversion				X
-Selected dataset(s) to do invers	on			Inversion Method
# Dataset 1 dumontgrd_m2Mr	Surve Bas Total Field S		<u>A</u> dd <u>W</u> eights <u>B</u> emove	Linear Fast CG (Matrix) Linear Slow CG Non-Linear CG Inversion Parameters
Inclination Comp	onent List	Survey area information		
82 #	Receiver	Item	Value	🔽 Use Initial Model
Declination	Bt	Center X (m) Center Y (m) Size X (m) Size Y (m)	98300.0000 36512.5000 1075.000 2000.000	Set Initial Model
Intensity 58157		Horizontal Angle (Degree) Average Distance Between Lines (m) Average Distance Between Locations (m)	90.000 100.000 12.599	Use known geological structure
Set Intensity	Coefficient settings	Select Survey Area		Set Structure
- Search Volume				Use topography information
Center X (m) 98300.00000	639 Center Y (m)	36512.499997814 Top Z (m)	0	Remove Grid Cells Distance (m) 87.5
Size X (m) 1200	Size Y (m)	2400 Thickness (m)	581.25	Distance (m) 87.5
Horizontal Angle (degree) Anti-clockwise from East	90	Select Search Area	Cell Sampling	Inversion Message Prepare data
Grid Settings Cells in X	Cells in Y 30	Cells in Z 5 Tota		Start inversion. # Data utilized in inversion is 1665 # Grid Cells 16650 Getting Initial Model
Spacing Z direction C	∆ C ∆:2 ^{irt} €	∆ _i Define Top cell thickne	ss (m) 18.75	
Set Output Log File N	lame	Get Settings From a Log File		Initial model misfit
Progress				
Close a comple	application when inversion tes	Eun	<u>C</u> ancel	Help

12/13/2022 After settings are done, press **<u>R</u>un** button to start the inversion process.

Magnetic Inverse 19

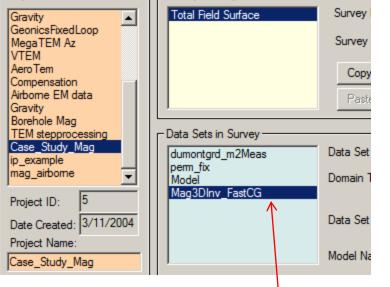
- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

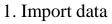
Executing the Inversion

1agnetic 3D Inversi Selected dataset(s) to c				Inversion Method	×	
		urvey Pro eld Surface Case_St	ject Add udy_Mag Weights Berrove	Inversion Parameters		
Inclination 82 Declination -32 Intensity 58157	Component List # Receiver 1 Bt	Survey area information Item Center X (m) Center Y (m) Size X (m) Size Y (m) Horizontal Angle (Degree) Average Distance Between L Average Distance Between L		Use Initial Model Set Initial Model Use Known geological structure Set Structure		
Set Intensity	Coefficient settings	Selec	t Survey Area	Use topography information		The right window (in white) shows
Size X (m) 1200	0.001 (Thickness (m)	Distance (m) 87.5		each data point's progress.
Horizontal Angle (degr Anti-clockwise from Ea Grid Settings Cells in X 111	ast 90	Select Search Area	Cell Sampling	Least Squares Misfit 48.3700 Iteration 6 Data Misfit 84.12% Least Squares Misfit 39.7569 Iteration 7		
Cells in X 1111 Spacing Z direction	Cells in Y 30	Cells in Z 5	Total 16650	Data Misfit 80.25% Least Squares Misfit 38.1925 Iteration 8 Data Misfit 81.65% Least Squares Misfit 37.5046		The "Progress" bashows the total
372022	.og File Name	Get Settings From a	a Log File	Initial model misfit 191.89%-		progress of this inversion.
Г	Close application when inversion completes	Hun	Cancel	Help		

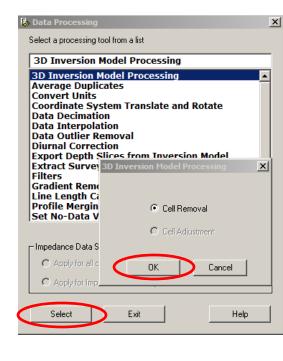
- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Surveys in Project Projects in Database -Survey Total Field Surface Gravity ٠ GeonicsFixedLoop MegaTEM Az Survey VTEM AeroTem Copy Compensation Airborne EM data Gravity Borehole Mag Data Sets in Survey TEM stepprocessing Case Study Mag Data Set dumontgrd_m2Meas ip example perm_fix mag_airborne Domain 1 Model Mag3DInv FastCG Project ID: Date Created: 3/11/2004 Data Set Project Name: Model Na Case_Study_Mag


Our 3D gravity inversion model dataset


Inversion Evaluation

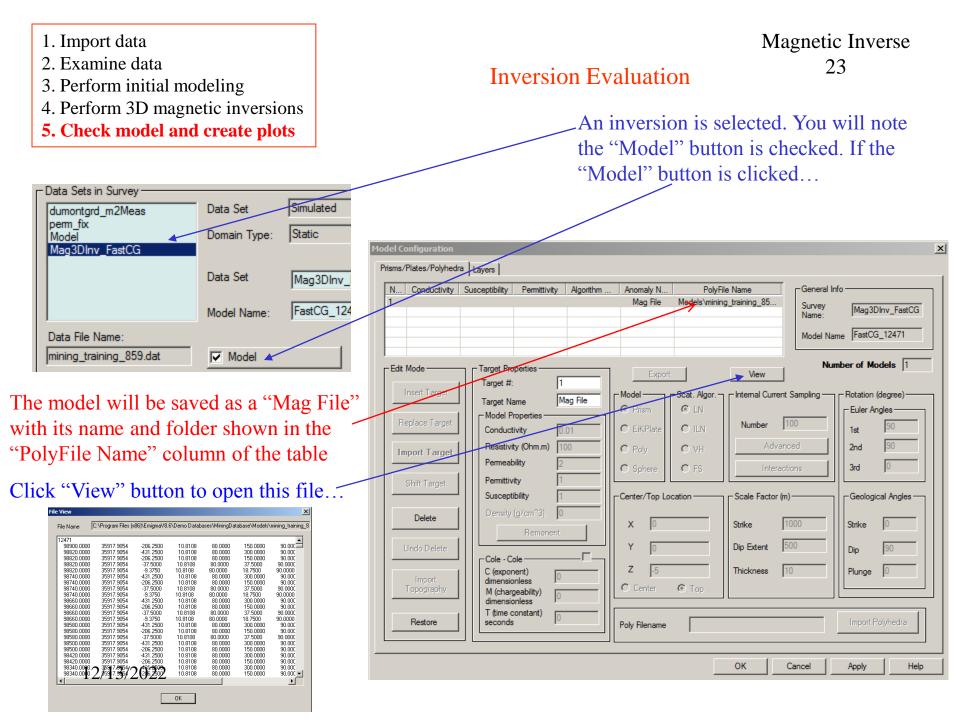
In each survey, there will be several data sets after modeling, inversion and processing. In this case, we have two forward models and one inversion model. Each forward model has a new data set containing the simulated data under the model. Similarly, each inversion contains a new dataset containing the simulated data set under the inversion model (for each point) and attached to that data set is the inversion model.


12/13/2022

Magnetic Inverse 21

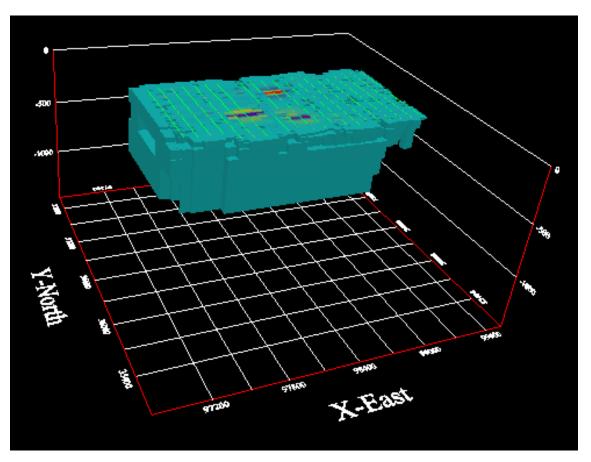
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- **5.** Check model and create plots

Click "Apply" button when it is done -


Therefore, users can reduce the range of model either before inversion (by Select Search Area) or after 12/13/2022 inversion (by Cell Removal)

Inversion Evaluation

Users can use "3D Inversion Model Processing" tool to remove cells in inverted model. Follow the routine shown in this page and arrive "Cell Removal" dialog. Choose the removal range of cells: "Low Limit" and "High Limit" (any cell within this range will be removed) /

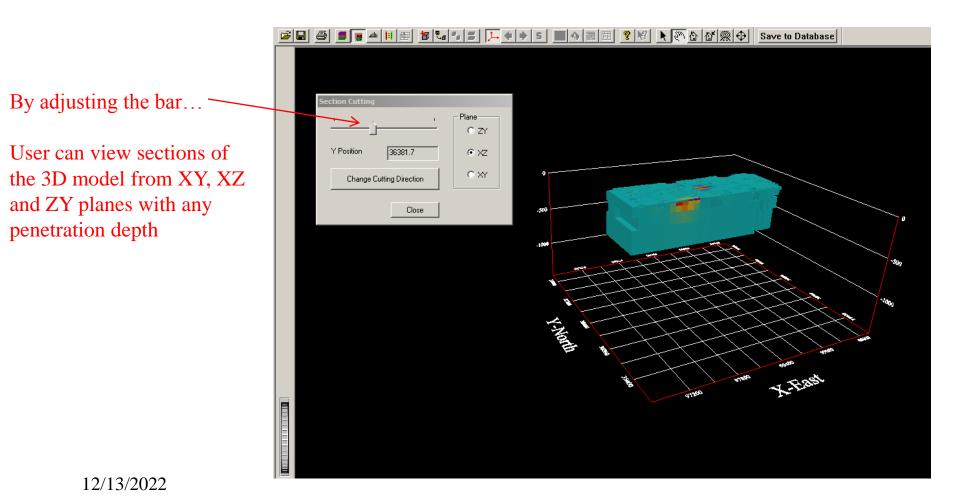

Case_Study_Mag - Total Field Surf Inversion File: mining_training		astCG	
Model: FastCG_12471		Data Set	ID: 859
		-Distribution of Values-	
# of Cells 12471		-0.201 -> -0 <mark>121:</mark>	0.0400%
# of Cells 12471		-0.121 -> 0.040:	0.5292%
Minimum -0.2 k(s	51)	-0.040 > 0.040:	97.9552%
		0.040 -> 0.121:	1.2348%
Maximum 0.2 k(s	51)	0.121 -> 0.201:	0.2405%
	Remove cells in th	nis <mark>ra</mark> nge:	
Low Limit	.2 Hig	h Limit 0.2	
Reset	.pply	Save	Cancel

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- **5.** Check model and create plots

Inversion Evaluation

Click viz button to open Visualizer tool to view the inverted 3D model...

Magnetic Inverse 24

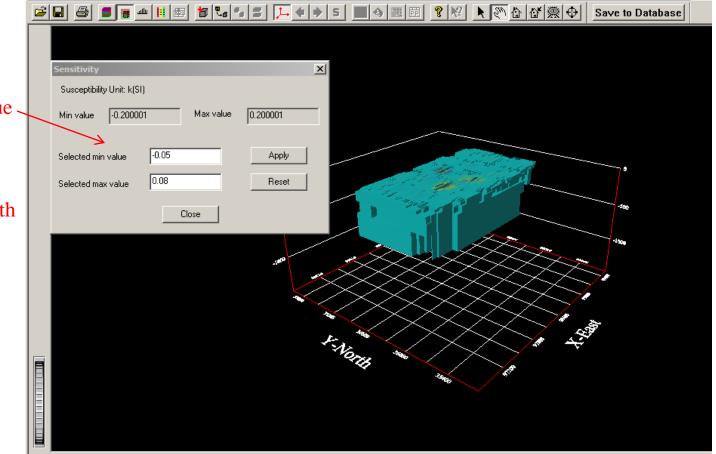

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Inversion Evaluation

Select from menu "Model -> Mag/Grv/Res File -> mag/grv/res Cutting" to open the Section Cutting tool.

Magnetic Inverse

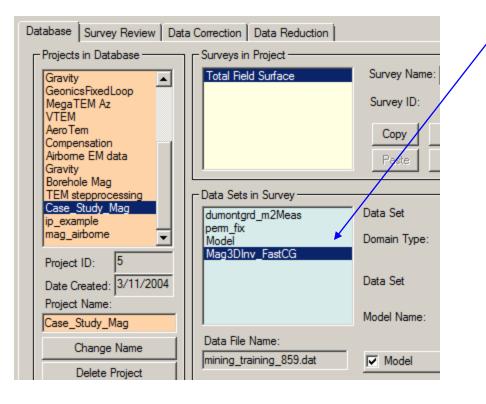
25


- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Inversion Evaluation

Select from menu "Model -> Mag/Grv/Res File -> Sensitivity" to open the Section Cutting tool.

Magnetic Inverse


26

By adjusting minimum value and maximum value shown in the figure...

The model in this figure will only exhibit cells with values specified in this range

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Inversion Evaluation

To assess how well the inversion model fits the data at each station, select the inversion data set and then select the plotter.

Magnetic Inverse

27

.oad Data Set					×
?	Do you want to	compare with oth	er Data Sets?		
Yes	No	Load Settings	Cancel	Help	

Select "Yes", when this dialog appears

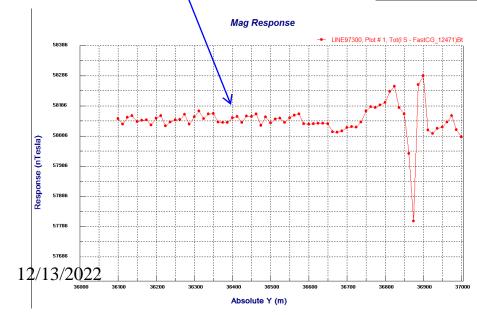
12/13/2022

2. Examine data

3. Perform initial modeling

4. Perform 3D magnetic inversions

5. Check model and create plots

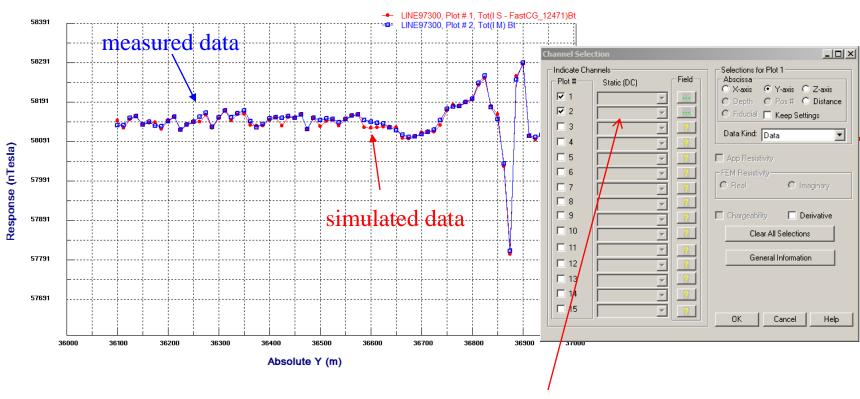

All selected data sets are then loaded to the Plotter application and the plot appears showing the simulated data of the first profile.

Inversion Evaluation

Magnetic Inverse 28

Select the data sets required for comparison and then click "Load"

Survey Selection						
Project: Case_Study_M	Mag		Surve	ey: Total Field Surface		
Data Sets in Survey:		2		Selected Data Sets to	plot:	2
Name	Model Name	Туре	Data Units:	Name	Model Name	Туре
perm_fix Model		S S	nTesla	Mag3DInv_FastCG dumontgrd_m2Me	FastCG_12471	S M
			Add to>			
			Add All to>			
			< Remove from			
			C Show IMPEDANCE Data Se	ts in Survey		
Loading Loaded 0	of 2					ncel



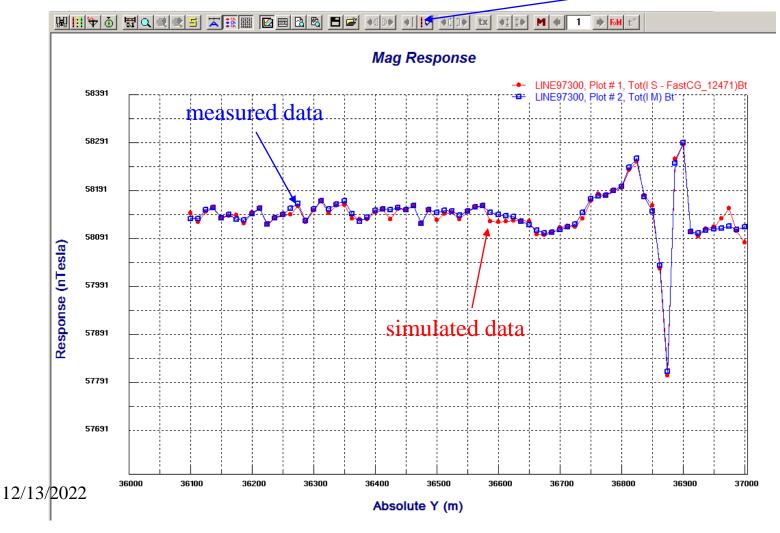
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Inversion Evaluation

Magnetic Inverse 29

The user may select other data sets to plot by simply double clicking on the plot

Mag Response


Select for the 2nd plot on measured data

12/13/2022

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D magnetic inversions
- 5. Check model and create plots

Inversion Evaluation

Multiple plots can be shown for various inversions and models in "Static" mode. The user may step through different profiles by simply clicking the arrow.

