EMIGMA V9.x – Modeling Tutorial

Modelling in EMIGMA

Getting Started

If you are familiar with EMIGMA, you may skip down to the modeling section.

Start -> Programs -> EMIGMA V9.x -> EMIGMA V9.x

Trouble Shooting: If you get a TGS License Check Warning - *Product "Open Inventor" is not licensed for this host* - or - *Product "GraphMaster" is not licensed for this host* when you open a file into the vizualizer - Click OK. This is a warning only and you will be able to continue using EMIGMA with full functionality.

To **Create a New Database** - Select **Create a New Database**, **OK** Browse for the path to save your new database file and give it a name.

Start Dialog ? 🗙
🕒 🔿 Create a New Database
Open an Existing Database
More Files E:\EMIGMA\Demo Databases\Example Database\ExampleDatabase.mdb E:\EMIGMA\Demo Databases\Mag_database\EMIGMA_demo2.mdb E:\EMIGMA\Demo Databases\TDEM_database\TDEM_database.mdb E:\EMIGMA\Demo Databases\MiningDatabase\mining_training.mdb E:\EMIGMA\Demo Databases\FDEM_demo_database\FDEM_demo.mdb
1 Check for updates Use Proxy server to get updates
OK Cancel Help

To **Open an Existing Database** - Select **Open an Existing Database** and either choose your database from the list or browse for your database file by selecting **More Files**....

Creating or Accessing a Survey

To perform modeling, you must have a survey constructed in your database. When creating a survey, EMIGMA stores all of the required parameters inside the database. Thus, once created, the user no longer needs to specify the data system or the survey configuration. Additionally, depending on the survey parameters, EMIGMA knows which algorithms to use.

You may create a survey in a number of ways. If you open a database, then you may have numerous surveys already available and they can be used directly or modified. You may create an entirely new hypothetical survey or you may import data and through the import process, the survey is defined and saved to the database.

Create A New Synthetic Survey.

In an existing project, select Add Survey, then select the System Mode

Depending upon the System Mode, certain types of transmitter and receivers are allowed and depending upon the System Mode – Fixed Transmitter or a Moving Tx-Rx is allowed

Transmitter Types

Coil – here a point source is used either electric or magnetic Loop

Current Dipole – a wire current source of selected length and geometry

Pole - for IP or Resistivity - a point source with a return pole at a selected distance and location

Receiver Types

Coil – here a point receiver is used either electric or magnetic Voltage Dipole – a wire receiver with grounded ends if in conductive material Pole – for IP or Resistivity – a point receiver with a pole at a selected distance and location

Matching Tx's, Rx's and separations (if a moving system are then defined. For some surveys not all transmitters have all receivers. Click **Next>**

1	Fag	Dasan Samurita
£	3.000	C Fassares C Itale:
2	17.000	Wavefure V
3	25,000	1. Special 1. Texe
4	53,000	Little Contraction of the Contra
ō	71.000	- Encuence Mode
÷	89.000	Taken a state of the state of t
7	107.990	v Logetters Step
ę	125.000	Contraction to the second state
3	143.000	
10	161,000	Finaurico II #olDecader.n
55	179.000	escending arder.
12	197/000	Frequency volueiHti #Esco/Dacada
13	10.000	TARGETORY CALIFORNIA AND AND AND AND AND AND AND AND AND AN
14	170.000	The second
15	350,000	C C C C C C C C C C C C C C C C C C C
10	530.000	
27	/10.000	Trend distants
18	890.000	- spectra mole
22	10/0/000	- Input - Filenelated
75	1420.000	Starting requerce index from 4 (7
23	1010.000	to 7) Nivinan Tequence 1
21	1 200 000	
34	1970.000	End sequence index Mainum hequency [19700
S	100000	
	2	Namber of homorics to stag over (homo Dio 10) [0 Basis Frequency (http:///
	Relieve/Reitan	<- Genesate and Add to the Finguescy List

Here you will select whether you wish to calculate a Frequency Domain model, a static (DC) model or a Time Domain survey.

If selecting Time Domain you must first specify a spectral survey which will compute the necessary frequencies to compute your time domain model which depends upon base frequency and the desired upper bandwidth. (see *Transform manual*)

Click Next>

Profiles Selection

Now you will be requested to create your data stations organized into Profiles. You may create individual profiles or utilize the Multiple Profile interface to select an entire survey grid.

-	Line	D 43	Survey 3 Total number Profiles Total number shattens Profile Name Station4	195 cd (v 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Charge UNED Aceb Protes On Tapagraphy Add Single Statun F Inset C Replace
5.1	P.	×	Y	2 8	× 2000.00 Y 0.00 # 100
		2000.00	000	1.00	
	i i	.1800.00	0.00	1.00	-AllE Location Deate Cocation
	1	1700.00	0.00	1.00	<u> </u>
	1	1600.00	0.00	1.00 -	
	1	1500.00	0.00	1.00	- Benerale Stations with Constant Step
	1	-1400.00	0.00	1.00	The Birds And Birds
	1	-1300.00	0.00	1.00	Fait station Last station New Proble
	1	-1200.00	000	1.00	x 200100 x 200000
9		-1100:00	6.00	1.00	
		-1000.00	0.00	1.00	V 0.00 V (0.00 Replace Postian
-		200.00	0.00	1.00	
1	1	-700.00	8.00	1.00	Z [1:00] Z [1:00] Multiple Postier
6	Ĵ.	ano on	670	11	
		Relieva	+Data		Station Incidence 100 News of Stations 41

There are specialized tools for importing profiles or boreholes. Click **Next>**

Output Selection

Now you will be requested to select the type of output that you require.

and the second se	Nomialization	- Parala		Feidu
Prepares 2 polarizations Declaration of the E polarization In the first aux In Declaration of the E polarization In Declaration of the E polarization In	Poly Poly Poly Pacent Poly Poly Poly Poly Poly Poly Poly Poly	Condense Conden	Ant Constant Constant Constant Const Constant Consta	C Scaland C Hou C Teld C Freepace P Teld - Freepace
P	Response Namadustion Com P Same Receiv C Name Compo P P	Francisaice powert en rent (dipole)		

In the example above is the selections for a standard dipole-dipole moving array. Here the data is to be normalized to the Inphase of the primary field and computed in units of Percent. The output fields are Total-Freespace and the normalization is Continuous (at each data point) and to the freespace of the same component as the data.

This selection is important for modeling where all of the Field(s) can be computed.

Special Data Representation are provided by computation automatically

Magnetotelluric Impedances and Tippers ZTEM Tippers CSAMT impedances VLF ratios

In the special case of Spectral Surveys, no selection is allowed. The software automatically computes all response that may be required for any type of TEM data whether magnetic or electric.

Click Finish >

This now takes you to the model selection.

See ModelGui

Importing Data

Database View Data Visualization Processi	Port Data Select the Import Data Icon
EMIGMA Do you want to create a new Project?	You will be asked if you want to create a new Project. Select Yes if you are starting a new database or new project within a database. Select No if you want to import a data file into a pre- existing project.
Name for New Project Type Name for New Project PEV Import Cancel	Туре in the name of the New project ОК

Importing a .pev file from GeoTutor

This functionality is for users of older versions, or if wishing to import simulated surveys from the GeoTutor examples but also is an easy way to transmit to others modeling exercise as one can export your data (measured or simulated) to this ascii format which is small in size. Otherwise, skip this section

Select Other Sources then PETROS EIKON file from the list. Click OK

PetRos EiKons . 14 Stewart Court, Ground floor, Orangeville, Ontario Canada L9W 3Z9 Tel: 1-(519)-943-0001 Fax:1-(519)-943-0002 E-mail: support@petroseikon.com Web Site: www.petroseikon.com

PEV-file(s) Import			×
PEV-file(s) will be imported to the Project	Im Surve Data Set Name	nport in the one Survey ey Name Crone boreho Model Name:	ole #123 Survey Name
✓ 1 C:\Emigma\EmigmaV6.4\Examples\crone\borecron	Sim VHPlate 1	VHPlate 1	
[2]			
3			
4			
5			
6			
7			
8			
9			
1			
Cancel Import			

Browse for the .pev file you would like to import into the database. Select the next checkbox and click the ... button to browse for more .pev files. Repeat the process to import up to 10 pev files at a time.

It is possible to modify the **Data Set Name**, **Model Name** and **Survey Name** for each .pev file you are importing (these names can be changed at any time in the database).

Frojects in Database Joureys in Floject Crone Borehole Cone borehole #123 Change Name Survey ID: 1 Copy Survey Comments BackUP Project ID: 1 Data Sets in Survey Delete Survey Sim VHPlate1 Data Set Simulated Data Set ID: 2 Data Created; 1/9/2012 5:16:31 Responses: Data Set Sim VHPlate1 Change Data Set Name: Crone Borehole Model Name: VHPlate1 Change Freespace Data File Name: Test_Database_2.dat Image Delete Data Set Delete Data Set Delete Project Configuration Grid(s) Data Set Info Data Set Info	- ^{Ju} Database: E:\EMIGMA\Tes Database Survey Review Dat	t_Database\Test_Database.t a Correction Data Reduction	ndb		
Copy Survey Comments BackUP Paste Add Survey Delete Survey Data Sets in Survey Data Set Simulated Data Set ID: 2 Sim VHPlate1 Data Set Sim VHPlate1 Data Set ID: 2 Data Created: 1/9/2012 5:16:31 Responses: Data Set Sim VHPlate1 Change Data Set Name: Crone Borehole Model Name: VHPlate1 Change Freespace Data File Name: Test_Database_2.dat Image Delete Data Set Delete Data Set Create Project Configuration Grid(s) Data Set Info Data Set Info	Crone Borehole	Crone borehole #123	Survey Name Survey ID:	Crone borehole #123	Change Name
Project ID: 1 Data Sets in Survey Data Set Sim VHPlate1 Data Set Domain Type: Time Date Created: 1/9/2012 5:16:31 Project ID: 1 Date Created: 1/9/2012 5:16:31 Project Name: Data Set Crone Borehole Model Name: Change Name Data File Name: Delete Project Data File Name: Test_Database_2.dat ✓ Model Delete Project Configuration			Copy Paste	Survey Comments Add Survey	BackUP Delete Survey
Create ProjectConfiguration Grid(s) Data Set Info	Project ID: 1 Date Created: 1/9/2012 E Project Name: Crone Borehole Change Name Delete Project	Data Sets in Survey Sim VHPlate1 Data File Name: Test_Database_2.dat	Data Set Domain Type: Data Set Model Name:	Simulated Data Time Date Sim VHPlate1 Cl VHPlate1 Cl	Set ID: 2 Created: 1/9/2012 5:16:31 I Responses: hange Freespace Total Delete Data Set
This license maintenance expires December 01, 2012	Create Project	Configuration	L Grid(s) This	s license maintenance expir	Data Set Info

Click Import.

Importing Field Data

EMIGMA	Import Data
Database View Data Visualization	n Process
Dia 🖪 🖪 🖻 🛤 of	Select the Import Icon

Name for New Proj		×
Type Name	for New Project	
EM31-3		
OK	Cancel	

Click OK

Select from the **Data Groups**, then the type of data you want to import from the resulting list. Here, we will utilize EM31-3 data as an example.

	Other Sources	1
Data	Groups G EM C CSAMT/CSEM C Potential Field C Magnetotelluric	
Airborn HEM -	C IP/Resistivity e TEM (.qct or ASCII format) FEM Helicopter (.qct or ASCII format) wed Wring FEM (.qct or ASCII format)	-
AMIRA Crone Geonic Geonic SIROT SIMAT	i TEM [pem or .raw format] :s TEM is SE1 ix TEM (.usf format) EM-3 Fem	
TEM-Fi terraTE UTEM: Zonge Zonge	AST (Lem format) 3 and UTEM4 GOP_32 TEM (.avg format) TEM (.ust format) Dipole FEM (.nct or ASCII format)	
Geonic Geoph MaxM VLF.c	s FEM ex GEM-2 (.qct or ASCII format) in (.qct or ASCII format) cct format)	

Click OK

Follow the steps on the pages that appear. Use the HELP button to guide you.

Database Organization

Organization

Multiple datasets and models can be contained in a single database file. Multiple organizational levels are provided allowing for a variety of organization criteria depending on the user's preference. As examples, the user may organize by interpretation project, data type or simply organize all data and projects in one database file. The user may organize in a single project (one organizational level in the database file) several data sets for more ready analyses of the different data types and integration of models between data types. This framework will soon lead to integration of data types when viewing data within EMIGMA.

There are three levels of organization in the Database: Projects in Database Surveys in Project Data Sets in Surveys - measured, simulated and inversion data sets sit here.

You can change the name of any Project, Survey or Data Set. You can also delete any Project, Survey or Data Set.

Configuration

Certain properties of the Survey that are in the profile, frequency/waveform, transmitter/receiver and Output sections can be viewed and modified.

Model

The Prisms/Plates/Polyhedra and Layers sections can be accessed here and modified.

Grids

View the grids that are attached to a data set. Export the grids to different formats. It also possible to perform some processing on a grid.

Survey Review Page

	-# Database: E:\EMIGMA\ExampleDatabase\ExampleDatabase.mdb				
Selecting profiles Use your cursor to select a profile or multiple profiles. Hold down the shift key to select multiple profiles. Selected profile(s) will appear in the Modify Profile box.	Database Survey Review Data Correction Data Reduction If you change any profiles a new Data Set will be created Profile # Locations Modify Profile: Set the commands and click on button "Save" Profile # Locations Modify Profile: Set the commands and click on button "Save" Profile # Locations Changed 100E_1 21 200E_1 200E_1 21 21 300E_1 21 21 400E_1 21 Filter Type 400E_1 21 Change 400E_1 21 Change 400E_1 21 Change 400E_1 21 Change C Spatial C				
Profile Sorting: If your profiles are imported in a non- sequential order, you may Sort the profiles by Line label, X or Y position. Select Line Label, X or Y and then click the Sort button.	550E_1 21 700E_1 21 Select Filter: Median Median Apply Profiles Sorting C Line Label C X Sort Y				

Reset/Restore:

If you make a change that you want to undo, you can restore your original profiles.

Deleting a Profile:

Select one or more profiles and select the **Delete** button

Changing a Profile Name:

If you are not happy with the label associated with a profile, select it from the list, enter a new name and click the **Change Name** button

1D Filters for Profile Locations:

The locations of a profile can be sent through a filter to adjust the location positions. A number of different digital and spatial filters are available.

Data Correction Page

The Data Correction Page allows you to edit the data values as well as the X, Y and Z values of the data set.

	-M Database: E:\EMIGMA	\Exam	pleD atabase\E	xampleD atabas	e.mdb		
Column view	Database Survey Review	Data (Correction Data I	Reduction)			
defines the columns	Select a channel:	2 3.3 5	Louise Logia				- Correction:
that are displayed	Select a channel.		Data of	L97300E	•	I F	Applu to: Data
	Data Type:						
Select a channel:	Data	1:N	2:Data	3:X	4:Y	5:2	_ I_ Apply for all Time Channel
Select the Data Type		1	124.875000	97300.00	36150.00	1.00	Apply for all locations
Select the Data Type,	Transmitters:	2	71.312500	97300.00	36200.00	1.00	Applu for all Profiles
Transmitter, Receiver,	loop[98300.0, 365 💌	3	30.187500	97300.00	36250.00	1.00	
Time Channel or	I F	4	33.525002	97300.00	36300.00	1.00	Data Lolumn Selection
Frequency Beenenee	Separations:	0	43.174333	97200.00	26275.00	1.00	Single Selection
Frequency, Response		7	39.275002	97300.00	36400.00	1.00	C Multiple Selections
and Phasor of the data		8	52 687500	97300.00	36425.00	1.00	
to correct		9	49.575001	97300.00	36450.00	1.00	Selection
	Receivers:	10	52.650002	97300.00	36500.00	1.00	Operations:
	Dipole Hx	11	35.825001	97300.00	36550.00	1.00	Multiple Data bu
Correction	I I I I	12	54.500000	97300.00	36600.00	1.00	Divide Data by
Apply to: You cap	Time Channels (mSec)	13	64.812500	97300.00	36650.00	1.00	Shift Data
Apply to. Tou can	-0.149000	14	80.787498	97300.00	36700.00	1.00	New Value
choose to apply to	1.621	15	64.349998	97300.00	36750.00	1.00	Set NODATA
some or all	Besponses:	16	87.987503	97300.00	36800.00	1.00	Reverse Sign
time channels/	Tabal	17	104.199997	97300.00	36850.00	1.00	Delete Point(s)
		18	105.012497	97300.00	36900.00	1.00	Delete Every
frequencies	Units:	19	81.750000	97300.00	36950.00	1.00	Reverse Frome Direction
-locations	nTesla per second						Correction Multiplier
-profiles							
-promes	Phasor	Colur	nn View			ך Coord. Units ך	<u> </u> ·1
	💿 Real	Colu	mn	Select		• meters	Undo Apply
	O Imaginary	Coli	umn 2	7			
Data Column		100	-			C feet	Save
Selection:							

Da Selection:

When Multiple Selections is chosen, The changes will apply to only the specified channels

Operations:

Select From	
-Multiply Data	-Dele
-Divide Data	-Dele
-Shift Data	-Dele
-New Value	-Dele
-Set NODATA	-Dele
-Reverse Sign	-Dele
-Delete Points	
-Delete Every	
-Reverse Profile Direction	

ete Frequency te Receiver ete Transmitter ete Separation ete Time Channel ete Error Channels

Specify the value used for the operation if necessary. E.g. Correction Multiplier for the Multiply Data operation.

Click Apply

Once you are satisfied with your corrections, select Save

The database design of EMIGMA allows all tools to be fully integrated and to share/access the data in the database. Thus, there is no need to open and save flat files. There is also no need to save a Database .mdb file, once it has been created. EMIGMA continuously updates the .mdb file as changes are made.

Model Building

Almost all forward modeling (model response simulation) in EMIGMA is based upon some Integral Equation technique. In the paragraphs below most of the various algorithms will be described.

There are several way to build models in EMIGMA. The most direct method is through the Modelgui.

This capability is accessed through the Model button on the main database page. When this function is accessed, two interfaces are provided. The first in the layered background interface critical to all EM applications but can be used for both magnetics and gravity.

Layers

	1xcopt#y	Records 1e-001 10 200	Dwneity 0 0 0	Techness Te+808 2 100	Configuration Survey Name (20gen) Houde Name (20gen)
		.500	0	10+006	Total Number of Lapon [7
112	Save Model	Jurily		lpkLow	Bathan Degite 12
Lap. 1%	isak Troad Sayot	Law	a entre	2	Cale Cale Polacados Node Facaneses
1	Publice Laver	L Read	ive Percetoria	10	decensioner Missensamlers siteensamlers
_	Dolera Lave	. Beld	ne fermedally	3	T (fere constant) parameter
1	Unds Delete	9.44	edde	2	Reservely & Trucceptibility Gald Data Film
	Renne	Den	ky kartonni Till	2	
	c- Impost Loyers	The	restation	2	Maralley (1999-1999)

Layers can be defined for the resistivity, thickness, electrical permittivity, magnetic susceptibility and density. Also, the layers can be made polarizable through setting Cole-Cole parameters which is applicable for all EM modeling. The top layer is an air layer by default but can be set with suitable parameters for other applications such as marine or underground. For example, for surveys on the seabed one might set the top layer to be the conductivity of sea water.

Insert: Set the required layer number and its parameters and then **Insert Layer** into the stack. *Replace:* Select the required layer, change its parameters and then **Replace Layer** into the stack. *Delete:* Select the required layer, and then **Delete Layer** to remove from the stack.

You can Import Layers from another survey in the database. Import Layers

Prisms/Plates/Polyhedras/Spheres

Contor With Star	e overeitet o overeitet o overeitet o overeitet	Personal J	Aparten Sane anonda Filhan acons Filhan a Filhan bob	Nane Pad Alter Cl	fin filme	Deves Harm Deves Harm Hadd Harm	(Fragen (Fragen)
int them must have finance for first of the first of the			ense C Aya V Jahas C Aya C Aya V Jahas C Aya C A	Trans	trand Level Is has P base P base fate re- lide Lengt		a maaka (1) aa ayaa a (1111) a (1111)
0.000	Lineored Bernard	- F	- I (70	ALCOLL A THE	toksani R		in (18.95 Ing (19.25)
-	1 Dag rest	e0 (F	- Deliver	F		:11	m

The other tab in Modelgui is for the insertion/editing/deletion of 3D anomalies.

Thin-Sheets (plate): There are two algorithms provided. FS (freespace) and VH. Both algorithms allow two spatial parameters (length and depth extent) normally used for strike length and dip extent and a strength as conductance (conductivity x thickness). Multiple plates can be used used but FS and VH cannot be mixed in one model.

The location of the plate is defined through either its Top or Centre. If one edge of the plate is level to the ground surface (z=0) then the Top point is the center of the top edge. If the surface of the plate is parallel to the ground surface then the Center point is the center of this surface. These definitions are common for plates and prisms.

The orientation of the plate (or prisms) is defined via 3 angles (Euler angles) and for convenience these are interpreted geologically as Strike, Dip and Plunge angles. The plunge angle is not a true geological plunge but is rather the third Euler angle.

FS (freespace) algorithm: This is an algorithm which assumes an inductive response only. The algorithm can be used in two manners. One manner is the direct modeling in time domain which assume a theoretical waveform with infinite bandwidth and the other (default) with a defined bandwidth of the system. Both methods include the response of the background layered but no interaction between the background and the plate is computed. This algorithm is based on the mathematical development of Annan but the computation bears no relation to the old UofT algorithm. The algorithms accuracy is specified by the number (order) of eigenfunctions (eigencurrents) between 1 (dipolar) and 11. You can use higher eigenfunctions but they do tend to become unstable above 11.

VH algorithm: This is an algorithm is based upon the theoretical developments of Walker. The algorithm computes the interaction of the plate with the induced currents in the host as well as the inductive response. This algorithm should be used if the plate is in a conductive background. The sampling of the currents on the plate are restricted to 441 points. The limitation of this algorithm is primarily seen when the aspect ratio of the plate (L/W) becomes high.

Prisms: This algorithm allows the use of one or multiple rectilinear prisms. The prism locations and orientations are defined as with the plates but in addition to depth and width, a thickness is defined. There are 2 algorithms provided with prism primitives, LN (Localized NonLinear) and ILN (inductive LN). Both are rapid techniques for computing the integral equation solution (secondary fields). The LN technique can be used for a wide range of EM techniques but also for magnetic surveys where it computes the full solution and not the traditional weak solution as with other codes. For EM, the prisms can be conductive or resistive compared to the background, have an anomalous electrical permittivity, magnetic susceptibility and polarization effects (Cole-Cole). The response computed is both the current channelling response as well as the magneto-static effect if the prism is magnetic. Thus, this algorithm is appropriate for resistivity and IP surveys, most long ground current source surveys (i.e. CSAMT, CSEM), MMR, MIP and for many TEM applications. For TEM, it is suitable for resistive structures, weak conductors, polarizable effects and structures in conductive backgrounds. The ILN provide some enhanced inductive responses over the LN.

- Interactions: While, generally in numerical EM techniques, it is assumed that the interaction between bodies and cells is assumed to take place naturally by the use of a general numerical technique, in practice this does not occur as the self interaction of each cells dominates the computation accuracy. The LN technique for a single body is not affected by this issue as the operator analytically includes current interactions within a body. Interactions between bodies is another matter. Generally speaking in many if not all codes, 2 separated bodies will not interact. This is one benefit of the LN technique in that it allows extensions for interaction and the effectiveness of these interactions has been tested to a great extent.
- Note: Prisms in magnetic and gravity surveys: In DC surveys, the response of a prism can be calculated analytically which is the manner provided by default in EMIGMA. For magnetics, there are 2 analytic solutions, one being the more traditional weak scattering which does not consider B to have zero divergence and the other the full solution considering all the governing equations.
- Galvanic and Inductive Scattering: (*a brief introduction*) In simple terms, a structure under an EM excitation can be excited to re-scatter/backscatter/produce a secondary field under several different physical phenomena. First, and the most common in our 25 years of interpretation experience, is when the currents which are induced in the background materials by the transmitter interact with the anomaly. This is described by charges and is governed by variations in resistivity, permeability, permittivity and polarization characteristics. The second phenomena which is most prevalent in detecting strong conductors is induction caused by the magnetic fields from the source interacting with the surfaces of the conductor. This is caused by conductivity and variations in permeability. Another effect often ignored is when the source field is essentially static and the target is permeable. This is simply the result of Gauss' law. Thus, this happens in the inphase of low frequency FEM data and during the on-time in TEM data. The LN algorithm can handle of these phenomena except when induction is strong. The purpose of the ILN algorithm was to attempt to increase the range of inductive responses. However, it is not meant for very strong induction but merely moderate induction.
- *Polyhedras:* For the LN and ILN algorithms as well as the algorithms for magnetic and gravity models, the prisms can be generalized to more arbitrary shapes. These shapes can be obtained in a variety of manners and we will give some illustrations here.
 - a) Converting a prism to a polyhedra and editing in the Visualizer: There are two common procedures in this case. In the first, case, the prism is dipped, converted to a polyhedra and then has the top sliced off a prescribed depth to represent a common geological modification of an anomalous structure. Second, the prism is converted to a polyhedra and then the poly editing tools are utilized in the visualizer to modify the prism to conform to the shape required.
 - b) Importing a polyhedra: There a three procedures which are common in this case. In the first case, a

synthetic polyhedra is built using the Poly Generate tool on the main EMIGMA toolbar. There is a wide range of capabilities available here and help is provided within this tool. The second method is to import a CAD file. These capabilities are also provide in the Poly Generate tool. The third method is to import topography which is available in PolyGenerate but also directly on the Prisms/Plates/Polyhedra

- c) Sample points: The software takes the number of sample and has its own rules as where to distribute these sample points within the polyhedra.
- Spheres: This algorithm is developed from Debye's expansion theorem for a sphere but is not limited to only a few terms as in conventional geophysical literature. It is a very general, accurate algorithm but is limited to dipole transmitters. Please contact us for more assistance if you require to use this algorithm. The algorithm should converge readily with the code restricted to a maximum of 200 harmonics.
- Mixing Targets with Different Algorithms: Any combination of prisms and polyhedra can be mixed in a model. VH plates can also to added to these combination. FS plates have to be run separately but can be added to other models with other algorithms in post processing.
- Internal Sampling for Prisms and Polyhedra: Like any other numerical technique some sort of grid sampling is required. For IE (integral equation) techniques only the internal secondary sources need be considered and thus only the inside of the object is digitized (gridded). In normal IE techniques, an interaction matrix is computed and then this matrix (scattering matrix) is inverted to computed the secondary sources. For the LN and ILN, a technique has been devised (Habashy et al, Groom and Walker, Alvarez and Groom, etc) to compute the secondary currents and magnetic polarization vectors directly. These secondary sources are then utilize simply and directly through the greens functions to calculate the secondary measurements at the

receivers. The internal sampling allows the user to select how many internal sources are utilized and thus enable them to study the convergence of the solution.

LN and ILN are a integral equation techniques. Such techniques calculate the secondary internal current and magnetic sources caused by the prisms in the model. If a number of sample points is prescribed without details then the points are distributed according to the aspect ratios. Otherwise, the user may prescribe the sampling as desired through the Advanced button. Generally, the solution will converge with sample points but may diverge if a sample point becomes too close to one of the corners. This result is predicted by theory but we will not enter this subject here. For the ILN algorithm, the solution is not stable for strong induction nor for large number of sample points. Use of the algorithm must be done with care checking for the stability of the solution with the number of sample points.

Interactions for Prisms and Polyhedra: No interaction between targets is provided for the plate algorithms but there are 3 types of interaction provided for prisms and polyhedra. In almost all simulation algorithms, the self interaction terms of each target are dominant in the calculations and the interactions between targets is lost. To overcome this typical numerical computation issue, we have developed interaction capabilities that ensure proper interaction between targets.

Superposition: no interactions calculated and the total response is the sum of the individual targets Far Field: the targets are not close but their scattered fields produce an additional reaction from each target. Near Field: the targets are close and secondary currents or magnetic polarizations flow between targets.

Viz Build and edit models in the Visualizer (3D VisRD). Select the Data Set and choose the Viz icon. You may select multiple data sets in order to examine variations in different models or to enable model building versus your data. We would suggest viewing our EMIGMA introduction video.

There are a number of basic controls here.

Starting from 5th from the far left, "Show Data", "Toggle Profiles", "Toggle Transmitter(s"), "Create New Anomaly", "Import Anomaly", "Copy Prism (poly)", "Split Layer", "Toggle Axes", "To next time window or frequency", "Back window or frequency", "Scale data", "Contour Data", blank, blank, "Show Source Field Distribution", blank, "Pick (allows you to pick an abject and also gives coordinates of a location in the view)", "Hand controls (rotation, zooming)", "To Home", "Set Home", "Full Scale", "Zoom"

You can then select the prism, plate or polyhedra, or layers, right click

and select Properties to bring up the Anomaly Properties window.

From this window, you can modify location, orientation, and attributes of the anomaly and upon Apply see the result in the 3D visual window.

You can import layers, models, polyhedras and topography from datasets in your current database.

Additionally on the right mouse or other capabilities such as copying, splitting, rotating, extending targets. You can also build or modify models through the Model button on the Database Page. IMPORTANT - Once you have made your changes in Viz, be sure to Save to Database to update the database, before running a simulation. If you do not Save to Database, your changes will not be updated.

Simulation

Select the Run simulations icon (red checkmark) and follow the directions. You can choose to overwrite the selected Data Set or create a new Data Set. The Simulation Mode window will be displayed.

teres Press/107	ALTER AVAILABLE		1.14
Charles and and a star	Par ball contains		Die in ander
111 111 111 111 111 111 111 111 111 11	(ner 1	Colouring Theorem and The Davie	rlave [
Tune Taximumin Tune TT d Tune TT d Page TT d	The Assessment	restantia (F	* F
Napana (3 4 Debelve	1E I	in the stand of the Annual Stand Stand	
	cte		

This interface provides controls to the super-engine which controls the modules which actually compute the synthetic responses. It allow provides progress reports in the middle section and in the white box to the bottom, information useful to the developers.

Run Batch Simulation: opens up a window which allows you to input multiple models to be run in the background. The idea with this tool is that you can create/edit multiple models either in ModelGui or in the Visualizer and save these models to individual datasets. Batch mode will then run all of these models in the background for you and save the results to the database for later examination.

F Digite teams from in y ²		-
r	the second	
p Sampan pilo apalis (* Salar e incanar * Salar e bases in	a-16 an 1-1 - 1	
F latker		1
		119411

The Advanced Settings allows you to make adjustments to the default simulation. These enhancements depend on the algorithm. But, the main issues are to allow the controls for the transform to view, control the number of stations simulated in any sub-run to control memory, set a grid of greens functions for downhole transmitters, add noise and finally to control the FS algorithm as mentioned above.

After the Survey is loaded and any advanced settings made, select the **Run Simulation** button within the Forward Simulation window. Note that you can cancel a simulation in the middle of a calculation should this be required.

Model Suite Generation (Set Range for Models)

Select a dataset, click the Simulation Check and then select Set Range of Models There are 2 choices, Layers and Plates, You can define a suite of models to build and run automatically. Choose Set Range

You can define a suite of models to build and run automatically. Choose **Set Range for Models** - Select Layers or Plate. Prism suite generation will be added in the future.

Layered Earth Models - Up to 5 layers are allowed, and the number of layers to modify is taken from the starting Data Set. You can set the Resistivity, Relative Permittivity, Susceptibility and Thickness of each layer (thickness of bottom layer is set to be infinitely thick to approximate the basement).

Plate Suites - You must start with a Data Set that contains a Plate in order to build suite of plate models. Currently you are allowed only one plate in the model suites. If there are multiple plates in the data set, then select one plate to begin. You can vary the length, width, strike, dip, plunge and conductance. The reference position can be either Z Top point or Z Centre point. The algorithm utilized for simulation will depend upon the algorithm set for the plate selected.

Layer - earth m	odel					×
Resisitivity	From To Number	 ✓ Layer 1 3000 3000 1 	 ✓ Layer 2 10000 10000 	Layer 3 0 0 1	Layer 4 0 0 1	Layer5 0 0 1
Relative Permitivity	From To Number	1 1 1	1 1 1	0 0 1	0 0 1	0 0 1
Susceptibility	From To Number	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1
Thickness	From To Number	20 20 1	1e+009 1e+009 1	0 0 1	0 0 1	0 0 1
Total number of	Total number of layer-earth models: Cancel Run					

Model Settings Model O Prism O Plate	Prisms Avai	iable: PLATE1 PLATE1	Model Name:	Model
Current Model location de	fined by: 💽	ZTop 🔿 Z Center	Z top (m): -8	179.995
Length (m) Width (m) Strike (degree) Dip (degree) Plunge (degree) Conductance	Current Value 700 800 0 0 0 45	FROM: 500 100 0 0 0 1	TO: 600 200 90 90 90 90 100	NUMBER: 3 3 3 3 3 3 3 3 3
	10	Cancel	Run]

Upon completion of the model runs, there will be a set of new datasets and these can be viewed or analyzed as with any other model simulation.

Data Representation

Other tools accessible in EMIGMA for those who are licensed

Lyr Source Distribution

- XHole Tomography
- Frequency to Time Domain Transform (manual transformation controls)
- 3D Magnetics, Gravity, Resistivity, CSEM, CSAMT Inversion
- 1D FEM, TEM, Resistivity, CSEM, CSAMT and MT Inversion Tools

Exporting Data

Export a data set to a

- ASCII file
- GEOSOFT file
- GeoTutor file
- QCTool file
- EMIGMA database
- Compressed database
- Survey lines to GoogleEarth KML file
- Survey lines to AutoCAD DXF file