# 1D RESISTIVITY INVERSION TUTORIAL

| Steps:                                              | Page |
|-----------------------------------------------------|------|
| 1. Import data to new or existing database          | 2    |
| 2. Examine data                                     | 6    |
| 3. Perform initial forward modeling                 | 8    |
| 4. Perform controlled Marquardt or Occam Inversions | 9    |
| 5. Inversion evaluation                             | 15   |
|                                                     |      |



- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation



Select "Generic Resistivity" and click "OK" button

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

# Resistivity Inverse 3



Click "Next" button to proceed to next step

Select electrode array type and set the distance to infinity pole

Set line direction and select the data column for the line

Set dipole length and reference point position

Browse and select data file for import

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

### Select vertices for both transmitter and receiver, as well as the units of coordinate

Select the column which contains voltage data and set its units

If current is included in data file and you want to use it for normalization, check "Current" option and select the column label of current from the dropdown list. Otherwise, uncheck this option and input 1 in the box below

Click "Next" button to proceed to the next step

| File View<br>C1X() C1Y() C22<br>41500.00 69743.00<br>41700.00 69743.00<br>41700.00 69743.00<br>↓ 1000.00 69743.00 69743.00<br>↓ 1000.00 69743.00 69743.00 69743.00 69743.00 69743.00 69743.00 69743.00 69743.00 69743.00 69743.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.00 69740.0 | X() C2Y() P1<br>79773.00<br>79773.00<br>79773.00 | Time delay:<br>On-Time windo<br>Window centre<br>Window width: | 0<br>W<br>(s): 0<br>0          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|--------------------------------|
| System<br>Transmitter Vertices:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Units -                                        |                                                                |                                |
| Electrode 7: 1 C1X()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Column #, '                                      | Window<br>width                                                | Column ₩, Window<br>name width |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Window 1                                         | 0 Window 1                                                     |                                |
| Flectorde 1: 5 P1X0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Window 2                                         | 0 🗖 Window 1                                                   | 2                              |
| Electrode 2: 7 P2X0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 🗖 Window 3 📃 🔽                                   | 0 🗖 Window 1                                                   | 3 🔽 🖸                          |
| Coordinate Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🗖 Window 4 📃 💌                                   | 0 🗖 Window 1                                                   | 4 🔽 0                          |
| • meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🗖 Window 5 💽 💌                                   | 0 🗖 Window 1                                                   | 5 🔽 🔽                          |
| C feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗖 Window 6 💽                                     | 0 🗌 🗌 Window 1                                                 | 6 🔽 🛛                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 🗖 Window 7 📃 💌                                   | 0 🗌 🗌 Window 1                                                 | 7 🔽 0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 🗖 Window 8 💽 💌                                   | 0 Window 1                                                     | 3 🔽 🛛                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 🗖 Window 9 🔄 💌                                   | 0 🗌 🗖 Window 1                                                 |                                |
| O mVolts   Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🗖 Window 10 💌                                    | 0 🗖 Window 2                                                   |                                |
| C Apparent Resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data Units:                                      |                                                                |                                |
| Current:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | © m∀/∀                                           | V/V                                                            | C mSec                         |
| Units O mAmp O Amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Window Units:                               | 🔿 mSec                                                         | C Sec                          |
| Phase 🔽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phase Units<br>© Degree C Rad                    | C mRad Frequ                                                   | Jency (Hz):                    |

< Back

Next >

Cancel

Help

- 2. Examine data
- 3. Perform initial modeling

Click "Run Import" button to start

importing data into database

- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

| 5 |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

After processing is done, click "Finish" button to complete the import procedure

# Resistivity Inverse 6

### 1. Import data

### 2. Examine data

- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

## 1. Check database for the survey



# 2. Click configuration

| Data File Name:   |         |
|-------------------|---------|
| ip_resist_152.dat | Model   |
| Configuration     | Grid(s) |

4. Check lines and stations by clicking "Survey Editor" button 😹







- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

Resistivity Inverse 8

**Note:** *Performed some initial modeling to get a "feel" of the background resistivity and estimate* parameters of initial model for inversion.



### Resistivity Response

simulated data with a forward model

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation



| 1D Resistivity Inversion   |                                                            |                               |
|----------------------------|------------------------------------------------------------|-------------------------------|
| 🔲 Flip data sign           | - Initial Model (SI units)                                 |                               |
| - Inversion Technique      | Initial model should include lower half space.             |                               |
| Marguardt                  | Resistivity (Ohm*m) 1826                                   | Default Layer Settings        |
| C Occam                    | Thickness (m)                                              |                               |
|                            | Total number of layers 15                                  | Insert layer index 1          |
| Select Component(s)        | Generate uniform layers Import L                           | ayers Insert a layer          |
|                            | # Resistivity                                              | Fhickness (m)                 |
| Use all locations together | There are no items to show in                              | his view.                     |
| Max Iterations 20          |                                                            |                               |
| Target Misfit 0.0001       |                                                            |                               |
|                            | To edit a value in the list, double click the value then i | nput a new value. To delete a |
| Processing Messages        | layer, select the layer then press DELETE Key.             |                               |
|                            | Model Parameters (resistivity, thickness) to invert—       |                               |
|                            | Parameter(s) to invert                                     |                               |
|                            |                                                            |                               |
|                            | Default is to invert resistivity without bound limits.     |                               |
|                            | To make changes, click "Parameter(s) to invert".           |                               |
|                            | _                                                          |                               |
|                            | Use inversion result of the previous location as initi     | al model                      |
| Total No. of Locations     | No. of Locations<br>Done                                   |                               |
| Progress                   |                                                            |                               |
|                            | Run Close                                                  | Help                          |

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation



# Resistivity Inverse 10

### **Inversion type**:

<u>Marquardt</u>: each layer per data point consists of 2 model parameters: thickness and resistivity (both inverted). <u>Occam</u>: each layer has a fixed thickness and the inversion only inverts for resistivity.

### Generate an initial model:

Input how many layers in total that you would like in the model, set the resistivity and thickness. Then click "Generate uniform layers" button to generate a series of uniform layers with specified parameters. If you click "Insert a layer" button, the layer with specified resistivity and thickness will be inserted to the layer with index specified in Insert layer index box. User could also import existing model by clicking "Import Layers" button.

User could directly change model parameters by double clicking their corresponding boxes in the table.

Set parameters to be inverted. Users could set bounds on parameters at appeared dialog

Use inversion result of the previous location as initial model will create smooth model

2. Examine data

3. Perform initial modeling

4. Perform controlled Marquardt or Occam Inversions

5. Inversion evaluation

## Selection of components





Users can select components involved with inversion. For the case of 1D resistivity inversion, different components are actually different separations. Use more components in inversion will make the inverted model more accurate

2. Examine data

- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

| anisti da f   | Ohm*m)          | 750         |               |               |
|---------------|-----------------|-------------|---------------|---------------|
| esteriantly ( | Unim mj         | 1.44        | Default L     | ayer Settings |
| hickness      | (m)             | 250         |               |               |
| otal numb     | per of layers   | 2           | Insert I      | ayer index 1  |
| <u>6</u>      | enerate uniform | layers      | Import Layers | Insert a laye |
| #             | F               | Resistivity | Thickness     | (m)           |
| 1             | 750.000000      | 1           | 250.000000    |               |
| 2             | 2000.00000      | 10          | 250.000000    |               |
|               |                 |             |               |               |
|               |                 |             |               | -             |

# Create a Starting Model

**Import Layers**: If you have created a forward model that you like, you may import it as a starting model or if you have a previous inversion that you like, you may import it as a starting model.

**Insert a layer:** You may insert additional layers at any stage.

### Generate a Starting model:

First select how many layers in total that you would like in the model, set the initial resistivity and thickness. Then click "Generate Uniform Layers".

### **Editing Starting model**:

After making a starting model (whether by importing or generating), the user may edit either the resistivity or the thickness of the layer. Simply double-click on the parameter setting.

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

#### X Click an "Invert" or "Set Bound" item to select/de-select the option. If "Set Bound" option is checked, to edit min/max bound value, double click the value, then input new value. Resistivity Settings Layer # Resistivity Invert Set Bound Bound - Min Bound - Max Invert Resistivity Set Bound 750.000000 2000.000000 3000.000000 🗹 Invert Resistivity -📔 🗹 Set Bound 1000.000000 Set All Remove All Apply Selected Min Apply Selcted Max Invert All Bounds Bound to All Bound to All Bounds Thickness Settings Thickness (m) Invert Set Bound Bound - Min Bound - Max Layer # Invert Thickness 🗌 Set Bound 250.000000 Apply Selected Min Set All Remove All Apply Selected Max Invert All Bound to All Bound to All Bounds Bounds <u>0</u>K <u>C</u>ancel Help

## **Constrain Model Parameters**



### **Resistivity Constraints**:

It is useful to constrain the layer resistivity to ranges that are possible in the geological environment.

### **Thickness Constraints**:

This option is only available under the Marquardt technique. Constraining the thickness to not be too large helps gain resolution. Constraining the thinness of the layer is a question of geological meaningfulness.

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation

### **Resistivity Inverse** 14

### Executing the Inversion

|                                  | 1D Resistivity Inversion                                                                                                                                                              | Initial Model (SI units)                                                                                                                                               |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Inversion Technique     Marquardt     O Occam                                                                                                                                         | Resistivity (Ohm*m)     750       Default Layer Settings       Thickness (m)                                                                                           |
|                                  | Select Component(s)                                                                                                                                                                   | Total number of layers     2     Insert layer index     1       Generate uniform layers     Import Layers     Insert a layer       #     Resistivity     Thickness (m) |
| <b>TT1 1 C 1</b>                 | Use all locations together Max Iterations 20                                                                                                                                          | 1 750.000000 250.000000<br>2 2000.000000 250.000000                                                                                                                    |
| (in white) shows                 | Target Misfit                                                                                                                                                                         | To edit a value in the list, double click the value then input a new value. To delete a<br>layer, select the layer then press DELETE key.                              |
| each data point's progress.      | SW MISFIT OF BEST MODEL<br>LS misfit of best model 0.493                                                                                                                              | Model Parameters (resistivity, thickness) to invert                                                                                                                    |
| The "Processing progress" bar    | Date 1: LINE 69743<br>Location 38: x=45150.000000<br>Performing adaptive iteration<br>SW MISFIT .230E-01<br>LS misfit .7887%<br>Performing adaptive iteration 2<br>SW MISFIT .229E-01 | Default is to invert resistivity without bound limits.<br>To make changes, click "Parameter(s) to invert".                                                             |
| shows the total progress of this | LS misht .7865%                                                                                                                                                                       | No. of Locations 37<br>Done 37                                                                                                                                         |
| inversion.                       | Progress                                                                                                                                                                              | <u>H</u> elp                                                                                                                                                           |

Click "Run" button to start inversion process

2. Examine data

- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- **5. Inversion evaluation**



### **Inversion Evaluation**



In each survey, there will be several data sets after modeling, inversion and processing. In this case, we have multiple forward models and one inversion model. Each forward model has a new data set containing the simulated data under the model. Similarly, each inversion contains a new dataset containing the simulated data set under the inversion model (for each point) and attached to that data set is the inversion model.

Our inversion model dataset (with Marquardt type inversion)

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- **5. Inversion evaluation**

# Resistivity Inverse 16

## Inversion Evaluation

An inversion is selected. You will note the "Model" button is checked.

If the model button is clicked...



- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- **5. Inversion evaluation**

## Inversion Evaluation

### a window will open

Attached to the database in a subdirectory called "Models" is the inversion results in a simple ASCII XYZ file (\*.pex) which may be viewed here. This file may easily be imported to another application although graphical viewing tools are provided within EMIGMA.

The 1D model for the final data point is also included.

Click "View File" button to view the data file of the saved 1D layered model.

| l          | Susceptibility   | Resistivity | Density         | Thickness | Configuration                  |                      |
|------------|------------------|-------------|-----------------|-----------|--------------------------------|----------------------|
| 5          | 0                | 1e+008      | 0               | 1e+008    | Survey Name                    | Marq_Inv_2           |
| 2          | 0                | 646.212     | 0               | 475.334   | Madal Nama                     | Mara Inv. 2          |
| 3          | 0                | 1922.68     | 0               | 1e+008    | Model Name                     | jmarq_inv_z          |
|            |                  |             |                 |           | Total Number of Laye           | ars 3                |
|            |                  |             |                 |           | - Depth                        |                      |
|            |                  |             |                 |           | Top Depth                      | 0                    |
| Edit M     | ode              |             |                 |           |                                | Jo                   |
| - Call Tri |                  |             | arameters       |           | Bottom Depth                   | -475.334             |
|            | Insert Layer     | Layer       | #               | 2         |                                |                      |
|            |                  | _           |                 |           | Cole-Cole Polarization Mod     | de Parameters — I    |
|            | Deelses Lever    | Resis       | tivity (Ohm.m)  | 646.212   | C (exponent) parameter         | 0                    |
|            | Neplace Layer    |             | ···· D          |           | M parameter (chargeshilit      |                      |
|            |                  |             |                 | <b>L</b>  | dimensionless                  | " P X                |
|            | Delete Layer     | Balati      | ve Permeshility | 1         | T (time constant) paramet      | er n                 |
|            |                  |             |                 |           | seconds                        | P.                   |
|            | Undo Delete      | Susce       | eptibility      | 0         | - Resistivity & Susceptibility | Grid Data Files      |
| -          |                  |             |                 |           | Models\ip resist 242 7.        | Dex                  |
|            | Restore          | Densi       | ty (g/cm^3)     | 0         |                                |                      |
| -          |                  |             | r               | 175 004   |                                | View File            |
|            | <- Import Lavers | Thick       | ness (m)        | 4/5.334   | Convert to GPSZ                | Delete File Laver(s) |
|            | · mpon cayora    |             |                 |           |                                |                      |
|            |                  |             |                 |           |                                |                      |

- 1. Import data
- 2. Examine data

Projects in Database -

gradient IP Europe

DipoleDipole

PoleDipole PolePole

IPR12 gdd orange2 GDP32 china

TEM IP

ELREC 6

Project ID:

Cablumbana

Project Name:

18

**N24 UBC INVERSE TEST** 

Change Name

**Delete Project** 

IPR10

TITAN 24 Line 69743 TITAN24 UBC INVERS

MT

- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions

Marg Inv 2

Data File Name:

ip resist 242.dat

**5.** Inversion evaluation

## **Resistivity Inverse** 18

#### Select the inversion. Database Survey Review Data Correction Data Reduction Surveys in Project Survey Name L69743 Res E ypole change L69743 Res W ypole change Survey ID: 🌋 🖂 Viz 🎟 🗺 🖙 🖺 🕵 🚒 Copy Paste Data Sets in Survey -Data Set resist 3 336 resist 3 336 340 Domain Type: resist 3 336 340 342 resist 3 336 340 342 resist 3 336 340 342 Choose CDI Viewer to view a stacked resist 3 336 340 342 Data Set Date Created: 1/27/2010 AII1 section of the results Processed 355

Model Name:

Model

**Inversion Evaluation** 

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- 5. Inversion evaluation



Choose CDI viewer to graphically view the results

The results for each **data point** are shown (without interpolation) initially in **log(Resistivity)** with **Equal Range** display.



other lines may be selected.

may **step** along the profile. You may also save the layered model of the current point by clicking



**Equal Range**: assign different colors to different ranges which are equal independently of the number of data falling within these ranges

**Equal Weight**: assign colors to different ranges which are unequal but covering the same number of data **Min**: Any data values below Min will be displayed as the color to the right of the edit field **Max**: Any data values above Max will be displayed as the color to the right of the edit field

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- **5. Inversion evaluation**



Choose CDI viewer to graphically view the results



Axes may be edited by double-clicking on it, and you can change Max, Min, Labels and Titles etc. on the popup dialog Depth and location interpolated may be repeated (note: the results of previous interpolations are used in the next interpolation so use with care)

2. Examine data

- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- **5. Inversion evaluation**



# Inversion Evaluation

To assess how well the inversion model fits the data at each station, select the inversion data set and then select the

**Resistivity Inverse** 

22

plotter.



| Load Data Set | t              |                  |               | x    |
|---------------|----------------|------------------|---------------|------|
| ?             | Do you want to | compare with oth | er Data Sets? |      |
| Yes           | No             | Load Settings    | Cancel        | Help |

Select "Yes", if this dialog is appeared

2. Examine data

3. Perform initial modeling

4. Perform controlled Marquardt or Occam Inversions

All selected data sets are then loaded to

appears showing the simulated data of

the Plotter application and the plot

**5. Inversion evaluation** 

the first separation.

## Inversion Evaluation

Resistivity Inverse 23

# Select the data sets required for comparison and then click "Load"

|                 |              |          | -                          | L.              |            | 15 |
|-----------------|--------------|----------|----------------------------|-----------------|------------|----|
| Name            | Model Name   | Type 🔺   | Data Units:                | Name            | Model Name |    |
| Dig_Gaus_7_1.00 |              | P        | Volte                      | Marq_Inv_2      | Marq_Inv_2 |    |
| Quantec_Model_2 | Model_201    | S        | Y OKS                      | Meas Static_101 |            |    |
| newPlug         | Plug         | S        |                            |                 |            | -  |
| Shallow222      | shallow222   | S        |                            |                 |            | _  |
| Shallow+Plug    | Shallow+plug | <u> </u> | Add to>                    |                 |            | _  |
| Plug            | Plug         | P -      |                            |                 |            | -  |
| Shallow         | shallow222   | P        | <pre>&lt; of IIA bbA</pre> | 1123            |            | _  |
| Shallow+Plug    | Shallow+plug | P        |                            |                 |            |    |
| Shallow_328     | Model_328    | S        |                            |                 |            | -  |
| Shallow_2       | Shallow_2    | 5 -      | C. Demousline              |                 |            | -  |
| 4               |              |          | Con Helliove Itolii        |                 |            | -  |
| - Loading       |              | Г        | Show IMPEDANCE Data        | Sets in Survey  |            | ad |
|                 |              |          |                            |                 |            |    |

**Resistivity Response**  LINE69743, Plot # 1, Tot(Ap S - Marg\_Inv\_2)B1 - S1 6000 5000 4000 Voltage (Ohm-m) 3000 2000 1000 41000 41500 42000 42500 43000 43500 44000 44500 45000 45500 46000 46500 47000 Absolute X (m)

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- **5. Inversion evaluation**

Inversion Evaluation

Resistivity Inverse 24

The user may select other data sets to plot by simply double clicking on the plot.



Select for the 2<sup>nd</sup> plot on measured data

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled Marquardt or Occam Inversions
- **5. Inversion evaluation**

## **Inversion Evaluation**

Resistivity Inverse 25

Multiple plots can be shown for various inversions and models in "Static" mode. The user may step through different separations by simply clicking the arrow.

