1D MT INVERSION TUTORIAL

Steps: Page 1. Data organization and import 2 2. Examine data through plots and Survey Editor 8 3. Perform initial modeling 19 4. Perform controlled inversions 21 5. Inversion evaluation 30

MT Inverse

1

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

The data in EMIGMA is organized into Projects, Surveys and Data Sets.

Across the top, there are four tabs, *Database* (view shown above), *Survey Review*, *Data Correction* and *Data Reduction*, as discussed on the next page.

1	 Data	organ	ization	and	import	
_						

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Database – Organizes the data into Projects, Surveys and Data Sets. For each data set, any corresponding models and grids are also shown (if the appropriate 'model' or 'grid' button is checked)

Survey Review - Allows the user to review the lines and data points. Data sorting, filtering and profile name modification options are available.

Data Correction – Enables the user to delete points and components. The user can also modify values in a number of ways such as applying a shift, multiplication by a factor, inverting the sign, etc.

Data Reduction – Allows the user to reduce entire data sets (measured or simulated) in a single operation

For a detailed description of each feature, please refer to the EMIGMA Manual.

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Browse and select .qct or .xyz data file for import

				Open	a data file						×
Import			×		Input a data file					\searrow	
au Data Formato		lou c			E:\Importdata\MT_csa	mt\tbl files\s344.tbl				Bro	wser
aw Data Formats		Other Sources	4		O QCT File I Mu	Itiple Stations		ASCII File			
	Data Groups			[Current Frequency Inform	mation	Impedance Format		Data Unit		
		● EM			Total Number	44	Real/Imaginary		Apparent resistivity (= 4*Pi/10000 Ohr	ns) 🔻
		O Potential Field			23	8.30000	C Apparent Resistiv	ity/Phase			
		C IP/Resistivity			16 11	3.30000			Une Number		0
-					85	2.03000 9.57000	Phase Units		/		
	Airborne TEM (.qct	or ASCII format)			4	1.99000	C Degrees		Station Number		v
E.	Crone (.pem or .raw	v format)			2 1	20.51000 4.89000 -	${f C}$ Milliradians		Frequency		T
A A	Dipole-Dipole FEM	(.qct or ASCII format)						/		,	
	Geonics FEM	election			Coordinate			/			
	Geonics 61				X: 0		_	Y -91	630		
A MO	GTK Fixed Wing Max-Min (act or	C CSAMT (.gct format, single station per worksheet)			1						
	Magnetotelluric,				Output Columns						
	VLFR (.qct forma ZTEM / AFMAG	 MT (.qct format, single station per worksheet or 									
	Stratagem MT (.	.tbl format, single station per file)									븝티
	MIEM (.qct or .s Phoenix CSAMT	MT (.qct format, multiple stations)						<u> </u>			
	Phoenix TEM (.u				Zyx —		, 🔽 Zyy 📈				
	TEM-FAST (.tem	All options support multiple frequencies			Real	<u></u>	Real		Real		
	terraTEM (.usf fo			/	Imaginary	<u></u>					<u> </u>
	Zonge GDP_32	OK Causel		/ [
,	<u>'</u>		/				/				
								< Back	Next >	Cancel	Help
		OK Cancel Help									
			_ /								

You can also/import MT data through Zonge import

Set coordinate information and data unit (real/imaginary or apparent resistivity/phase). The data stored in EMIGMA is in real and imaginary. If you select apparent resistivity/phase, they will be converted.

4

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Import data to EMIGMA Database Project and Survey information Project Name : default	Survey Name : DataSet Name : s344_344 Meas MT	×	
Import Add a point System Configuration Tx/Rx Settings Import all stations into one line	Messages : System Configuration Declinations are measured from the North and are positive moving from north to east. Declination of the E polarization (in degrees) 0 Declination of the H polarization (in degrees) 90 Declination of the Receiver X axis (in degrees) 90 Length of the first E field dipoles (in m) 50 Length of the second E field dipoles (in m) 50	×	 Click "Import" button and the "System Configuration" dialog will appear. Make configurations according to your system and click "OK" button to start importing. When running a simulation, the polarization 90 degrees from the one given here is also computed (both are necessary to calculate all four elements of the matrix), but only this one is saved
	OK Cancel	Help	After processing is finished, click "Finish" button to complete the import procedure

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 4

Merge data from different datasets

If your import files contain only one location per file as in this case, you have to import them separately as different datasets and merge them into one profile later.

Click "Merge Data Set" button to open the "Data Set Merge" dialog.

X Surveys in Project: Data Set 1: 🔶 s344 351 s351_351/Meas MT +S -->> \$351 351 Simulated Attached Select datasets to be merged from the Number of Profiles 🔶 Meas MT \$350 350 Data Set 2: table respectively, and add them to 🔶 Meas MT s350_350/Meas MT +5 -->> \$349_349 the right boxes. Simulated Attached \$348 348 Number of Profiles: \$347 347 Result Data Set s346_346 s345 345 s351_351_ Survey Name: Click "Merge" button to generate a s344_344 Data Set Name: Meas MT_ s351_351_ new survey (in this case, named \$349_349 Domain Type: Frequency \$348_348_ "s351 351 ") containing a new \$347_347_ Data Set Type: Measured -246 346 dataset ("Meas MT"). Show Only Measured Merne Exit Help

2. Examine data

🔈 Data Proce

Filters Gradient Removal Line Length Calculator MT Impedance Process Profile Merging Set No-Data Value Sort Locations on Profile Vector Rotation

Select

Select a processing tool from a list
Profile Merging

Coordinate System Translate and Rotate

Exit

Average Duplicates Convert Units

Data Decimation Data Interpolation Data Outlier Removal Extract Survey Segment

- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 5

Merge profiles in the same dataset

Click "Data Processing and Filters" button to open the data processing dialog.

Select "Profile Merging" option and click "Select" button.

MTNew 2	
MTNew 2 MTNew 2	Sort prefiles by X 💌 coordinate
MTNew 2 MTNew 2 MTNew 2 MTNew 2	Delete every 2 location Apply
MITNEW	Delete 0 of 0 locations Apply
	Calculate Statistics
	MTNew 2 MTNew 2 MTNew 2 MTNew 2 MTNew 2 MTNew 2

Select profiles to be merged from the dataset, and click "Merge Selected Profiles" button. All profiles will then be merged into one profile and saved into a new dataset by clicking "Save to the Database" button.

Help

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

If you want to observe one tensor element instead of two, check only the one you want in Impedance Tensor section and click "OK" button. You can also select more elements here.

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

To observe both Tx and Ty tipper data:

MT Inverse

- 1. Data organization and import
- 2. Examine data
- **3.** Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Note: *Performed some initial modeling to get a "feel" of the background resistivity and estimate* parameters of initial model for inversion.

simulated data with a forward model

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

< Back	Next >	Cancel	Help

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Create a Starting Model

Generate a Starting model:

Select how many layers in total that you would like in the model, set the initial resistivity and thickness. Then click "Apply" button.

Insert a layer:

Set resistivity and thickness of the layer and check "Insert" radio. Select one layer from the table and click "Add to List" button. The new layer will be added below the selected one.

Editing Starting model:

After making a starting model (whether by importing or generating), the user may edit either the resistivity or the thickness of the layer. Simply click on the parameter and make change at "Resistivity" and "Thickness" boxes above the table. Select "Replace" option and click "Add to List" button. The user may also join two adjacent layers by selecting one layer and clicking "Join Layers" button to merge this one with the layer below.

Import Layers:

If you already have a forward model that you like to use, you may import it as the starting model by clicking "Import" button and select from appeared dialog.

- 1. Data organization and import
- 2. Examine data

NVERSION. Parameters Settings

- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 19

Model and Simulation Parameters Settings

Data type:

Select type of data to inverted: Apparent Resistivity and Phase, or Apparent Resistivity Only.

Max. Iterations:

A higher value will help ensure accuracy but execution time will increase

Target Fit:

The residual between the simulated data under the best model and the measured data.

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Executing the Inversion

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Inversion Evaluation

In each survey, there will be several data sets after modeling, inversion and processing. In this case, we have 2 half space models and 1 inversion. The forward model has a new data set containing the simulated data under the model. Similarly, each inversion contains a new dataset containing the simulated data set under the inversion model (for each point) and attached to that data set is the inversion model.

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

a window will open

1odel Configuration Prisms/Plates/Polyhedra Lay	ers	-		X
N Susceptibility 1 0 2 0 3 0 4 0 5 0 6 0	Resistivity 1e+008 22.5678 890.076 13.0544 205.332 188.712	Density 0 0 0 0 0 0	Thickness 1e+009 333.333 333.333 333.333 333.333 333.333 333.333 333.333 333.333	Configuration Survey Name Inv_Occam_16 Model Name Inv_Occam_16 Total Number of Layers 17 Depth
Edit Mode Insert Layer Replace Layer Delete Layer	Layer Layer Resi Rela	Parameters — r # stivity (Ohm.m) tive Permittivity tive Permeability	2 22.5678 1 1	Top Depth 0 Bottom Depth -333.333 Cole-Cole Polarization Mode Parameters C C (exponent) parameter 0 dimensionless 0 M parameter (chargeability) 0 dimensionless 0 T (time constant) parameter 0
Undo Delete Restore <- Import Layers	Susc	septibility sity (g/cm^3) kness (m)	0 0 333.333	Resistivity & Susceptibility Grid Data Ales Models mining_training_750_22.pex View File Convert to GPSZ Delete File Layer(s)
				OK Cancel Apply Help

Attached to the database in a subdirectory called "Models" is the inversion results in a simple ASCII XYZ file (*.pex) which may be viewed here. This file may easily be imported to another application although graphical viewing tools are provided within EMIGMA.

The 1D model for the final data point is also included.

-Click "View File" button to view the data file of the saved 1D layered model.

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Inversion Displays MT Inverse 25

Choose CDI viewer to graphically view the results

The results for each **data point** are shown (without interpolation) initially in **log(Resistivity)** with **Equal Range** display.

If there is more than one line then **other lines** may be selected.

A plot of resistivity vs. depth for a single station is also provided and you may **step** along the profile. You may also save the layered model of the current point by clicking

Equal Range: assign different colors to different ranges which are equal independently of the number of data falling within these ranges

Equal Weight: assign colors to different ranges which are unequal but covering the same number of data **Min**: Any data values below Min will be displayed as the color to the right of the edit field **Max**: Any data values above Max will be displayed as the color to the right of the edit field

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

Choose CDI viewer to graphically view the results

Axes may be edited by double-clicking on it, and you can change Max, Min, Labels and Titles etc. on the popup dialog Depth and location interpolated may be repeated (note: the results of previous interpolations are used in the next interpolation so use with care)

x

Help

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

All selected data sets are then loaded to the Plotter application and the plot appears showing the first channel of the simulated data.

Inversion Evaluation

MT Inverse 29

Select the data sets required for comparison and then "Load"

Name	Model Name	Туре	Data Units:	Name	Model Name	Тур
s14* s351 Imped s12 g s351 Imped	s14* s351 s12 g s351	S S	Ohms	Inv_Occam_16 Meas MT	Inv_Occam_16	S M
			Add to>			
			Add All to>			
			< Remove from			
		F	Show IMPEDANCE Data S	Sets in Survey		

Note: The amplitude of Zxy and Zyx will always be the same for 1D model.

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 30

The user may select other data sets to plot by simply double clicking on the plot

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 31

Multiple plots can be shown for various inversions and models in "Profile" mode. The user may step through time windows by simply clicking the arrow.

To show in "Spectrum" mode use the "Domain" button.

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 32

Here, spectrums are compared for a single data point in linear-linear mode. The user may move to other data points by simply clicking the arrows.

The step-frequency function of the arrows is now converted to step position.

It is useful to compare in log mode. This functionality is accessed by doubleclicking either axis.

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 33

Here, we select log(frequency) vs. log(amplitude)

- 1. Data organization and import
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform controlled inversions
- 5. Inversion evaluation

MT Inverse 34

Here, we select frequency vs. amplitude

Double click axis to popup the "Scale Setting" dialog

In CSAMT/MT, it is common to observe data in **Descending** order of frequencies (from high to low)

Note: based on results of inversion, you may run additional inversions with different settings, and compare the resulting sections in the CDI viewer and the fit in the plotter.