INVERSION OF MAGNETIC AND GRADIENT MAGNETIC DATA FOR DETECTION AND DIS CRIMINATION OF METALLIC OBJECTS

Ross Groom, Petros Eikon Incorporated EEGS Prague, 2003

Forward Simulation of Metallic Objects

- a) Why? for what purposes
- b) How? methodology, direction

UXO Inversion Objectives

- a) Depth Estimation by 3D Euler Deconvolution
- b) 'Least Squares' Method for Magnetization Vector

Simulation of the Magnetic Field caused by Metallic Objects

WI - linear or "weak" induced magnetization SI - non-linear or "strong" induced magnetization RM – remanent or "permanent" magnetization

- how do distributions of WI, SI and RM affect measured B?
- Interactions between permanent and induced
- Total $B_T(TMI)$ versus (Bx,By,Bz),
- nature and use of $(\delta B_T / \delta x, \delta B_T / \delta y, \delta B_T / \delta z)$ plus higher order derivatives ?

 B_0

Simulation of the Magnetic Field caused by Metallic Objects *How to Simulate ?*

WI - linear or "weak" induced magnetization SI - non-linear or "strong" induced magnetization RM – remanent or "permanent" magnetization B₀

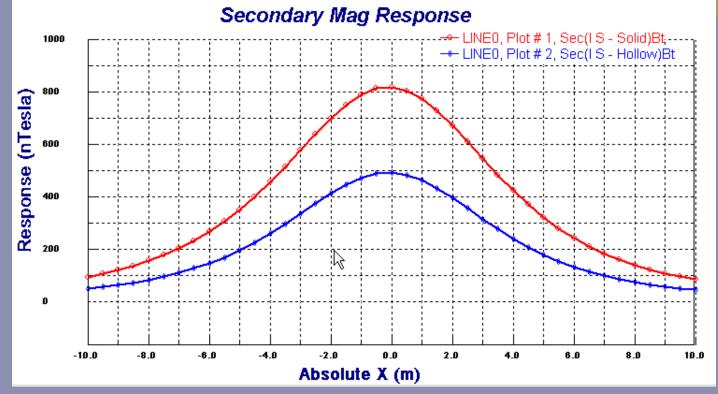
$$\underline{\mathbf{B}}(\mathbf{r}) = \underline{\mathbf{B}}_{0}(\mathbf{r}) + \int \delta \mu \ \mathbf{G}(\mathbf{r},\mathbf{r}) \ \boldsymbol{\Gamma}(\mathbf{r}) \ \underline{\mathbf{B}}_{0}(\mathbf{r})$$

 $+\int \mathbf{G}(\mathbf{r},\mathbf{r}) \mathbf{M}(\mathbf{r}) + \underline{interactions}$

- $\Gamma(\mathbf{r})$ analytic integration over singularity
- Derivatives not by finite difference
- Interactions multi-body, single body
- Induced by Permanent ?

Simulation of the Magnetic Field caused by Metallic Objects *Structural Models ?*

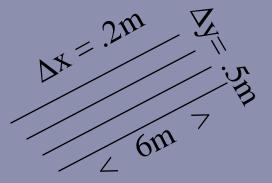
Polyhedral grid format which can be used for the different physical models



Simulation of the Magnetic Field caused by Metallic Objects

Structural Models ?

 $R_ext = 1m$, $R_int = .8m$, L = 5mIncl = 75°, Declination = 20°



 a) 3D Euler Deconvolution – with statistical analyses of position of magnetization
 b) Least Squares Inversion for <u>M</u>

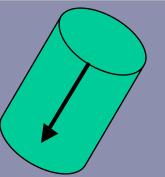
<u>Synthetic Example</u>

R = 56mm L = 300mm

 \underline{M} (incl =75°, decl = 225°, strength = 2 x B₀)

a) Euler Deconvolution – Zhang et al, Geophysics, 2000

	Target	Х	Y	Z
Synthetic Example R = 56mm	Actual	-1	0.25	-1
$L = 300 \text{mm}$ $V = .3 \text{m}^3$	FFT derivatives	625	.245	578
$\underline{M} \text{ (incl =75^{\circ}, decl = 225^{\circ},}$ strength = 2 x B ₀)	<i>True</i> derivatives	994	.265	994

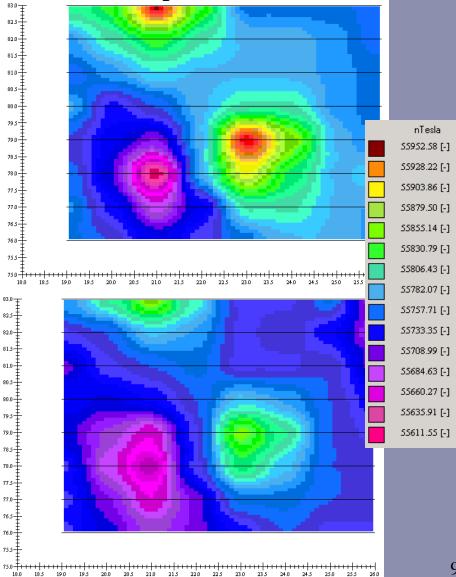

b) Least Squares – user controlled interactive process Invert for volume magnetization then divide by volume

- 1) Select a search volume -e.g. 4x4x10m
- 2) Select a target volume $-e.g. 0.125m^3$
- 3) Iterate refining volume with previous positional estimate

Synthetic Example

Model	X centre	Y centre	Z centre	Dip	Decl	Strength	Cell Size
Actual	-1	0.25	-1	75	225	2	0.003
Inverse I	-1.25	0.75	-0.75	33	-33	0.034	0.125
ln <u>ר</u> ץse ll	-1.1	0.3	-0.9	77	264	0.6	0.008
inរក្រទេ Inverse	-0.95	0.25	-1	74.9	223	1.49	0.004
Inverse IV	-1.05	0.25	-0.95	76	235	1.8	0.003

 \underline{M} (incl =75°, decl = 225°, strength = 2 x B₀)



Artillery Shell B6 depth of burial = 0.5 mdip 45 degrees Shell diameter = 10.5 cm, Length = 46cmWeight 15 kg Line Spacing = 1m Data Spacing = 1m York University Test Site

EiKon Envirotec

Top Sensor – 1m

Bottom Sensor – 0.5m

9

55976.94

55952.58

55928.22

55903.86

55879.50

55855.14

55830.79

55806.43

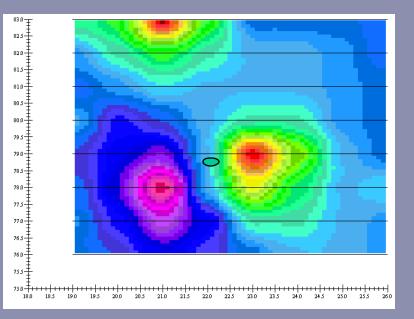
55782.07

55757.71

55733.35

55708.99

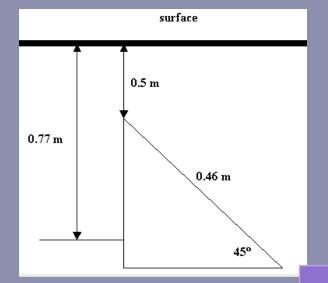
55684.63


55660.27

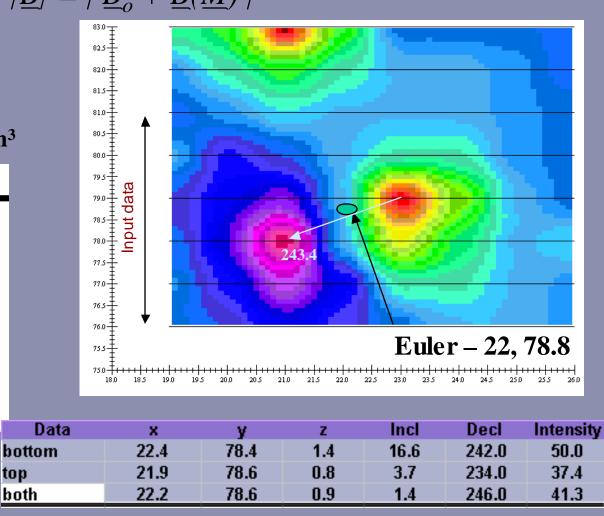
55635.91

Test Site Example

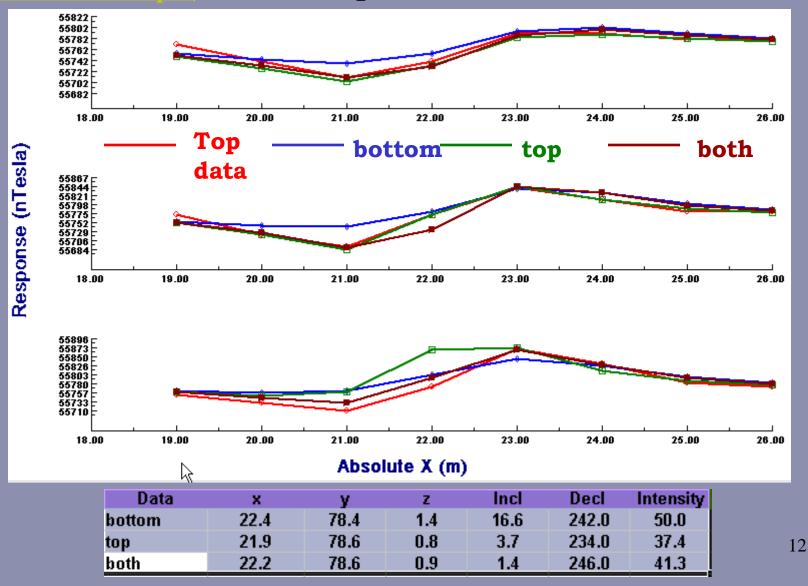
Euler Deconvolution - *Derivatives by Simple Difference* **top-bottom sensor, cross line, inline**


Output Results Structural Index 3
×0 22.03737396138 m
y0 78.83611354199i m
z0 -2.63986637158C m

depth of burial = 0.5 m dip 45 degrees Shell diameter = 10.5 cm, Length = 46cm


Inversion of the Magnetic Field caused by Metallic Objects Least Squares Inversion $|\underline{B}| = |\underline{B}_o + \underline{B}(\underline{M})|$

Background Inclination = 63.3**Declination** = 5.1. 55768.5 (nT). Cubic Volume Used = $.004m^3$



top

both

Least Squares Inversion

Forward: Versatile Technique allowing: *Easy use and development *Range of physical simulation abilities *Complex model calculation capability *Speed

Inversion:

Quick estimators for position and magnetization

Direction:

Comparison with different instruments

Comparison with different data types

*****Forward modeling for magnetization distribution characterization