Mag3D Inversion

petros eikon

Data Inversion

d = F(m)

 $d \rightarrow$ data vector of dimension N

 $m \rightarrow$ model vector of dimension M

 F - physical relationship describing the data as a function of the earth model - In practice an approximation

Approaches

Direct Matrix Inversion - historical

Optimized Inversion - modern practical approach

Data Selection and Search Area

General information Search area
Input file: C:\Emigma\EmigmaV6.3\Examples_Release\3DMag_invi Browser Read
Survey Maximum survey area -200 <= X <=
Selected survey area -200 <= X <=
Components X X T X T Total Number of data 221 per component
Area to search a model Center (m): Size (m): Eular angle (degree): x 0 x 360 y 0 y 270 z -67.5 z 135
Customize C A .pev file A permeability distribution (.mag) file A dataset Browser File name: Read
< Back Next > Cancel Help

- Data file .pev
- Survey Area
 - Data Subset
 - Data component
- Search Area
 - where is the anomaly expected ?
- A) User specified
 B) From a set of prisms
 C) From a distribution file

Inversion Style

neral information Grid		X
Inversion method		
C Matrix C Optimization		
Grids of search area		
Maximum total number of grids allowed: 120		
Number of grid points along X direction:		
Number of grid points along Y direction: 3		
Number of grid points along Z direction:		
Total number of grids: 15		
< Back Next >	Cancel	Help
(Count - Honey		

Matrix or Optimizaton

Matrix Inversion direct inversion

 $\label{eq:d} \begin{array}{l} d = F \ m \\ d \rightarrow vector \ of \ N - dimension \\ F \rightarrow Matrix \ of \ N \times M - dimension \\ m \rightarrow vector \ of \ M - dimension \end{array}$

Optimized Inversion recursive inversion minimizing a functional

Matrix Inversion

rix inersion approach			_
-Method			
C Full solution C Interative LN solution	n (1 C) Interative L	N solution (2 💌 Born solu	ition
 Born solution: Invert M x M matrix to obtain permeability. 	n J and use Born ap	proximation to solve for	
-Susceptibility constraints	Search param	eters	
0 <=×<= 3	5	- Maximum iterations	
Cells with susceptibility value equal to	· ·		
U will not be output to permeability distribution (.mag) file.	0.001	Susceptibility tolerance	
100			
)ata usage: 100 %			
< B	ack Next:	Cancel	Help

$H_{ext}(r) = \int G(r,r')J(r')dr'$ $J(r') = (m(r') - m_0)H_{ins}(r') = \chi(r')H_{ins}(r')$

Techniques

Full solution

no assumptions

Interative LN

- + removing non-permeable cells
- Interative LN
 - + Internal H = LN H
 - Born starting model

Born Solution

Internal H = Background H

Inversion Output

Start Inversion

- Mag File
 - distribution of anomalies

Grd File

- for Meshviewer
- Output to .pev file
 - maximum 499 prisms

Meshviewer

Optimized Inversion

Inversion method		
O Matrix 💿 Optimizatio	on	
Grids of search area		
Maximum total number of grids allowed:	2000	
Number of grid points along X direction:	20	
Number of grid points along Y direction:	14	
Number of grid points along Z direction:	4	
Total number of grids:	1120	
· · · · · · · · · · · · · · · · · · ·	, .	
<u></u>		

General concept

 Start with an initial guess and go looking for the best fitting model

Critical factors

- Good forward simulation
- good minimization technique
- good starting model
- good data

Optimized Inversion

 $\phi(m) = \lambda \phi_d(m) + \phi_m(m)$

(m) - functional to be minimized
 (m) - data misfit
 (m) - model misfit
 - Lagrangian multiplier - regularization weight

Occam style model misfit function

 $\phi_{\mathbf{m}}(\mathbf{m}) = \alpha_{0} \stackrel{\text{tr}}{\sim} \mathbf{w}^{2}(\mathbf{z}) \left[\mathbf{m}(\mathbf{r}) - \mathbf{m}^{0}(\mathbf{r}) \right]^{2} d\mathbf{v} +$ $\checkmark_{i=\mathbf{x},\mathbf{y},\mathbf{z}} \alpha_{i} \stackrel{\text{tr}}{\sim} \left[\mathbf{w}(\mathbf{z}) \stackrel{\text{tr}}{\prec}_{i} \left(\mathbf{m}(\mathbf{r}) - \mathbf{m}^{0}(\mathbf{r}) \right) \right]^{2} d\mathbf{v}$

 $>_{I}$ - weighting factors w(z) - depth weighting

Physical Modes - Forward Model

M via LN

- Internal Magnetization vector (M) derived via LN
- H via LN
 - Internal magnetic vector via LN
- H via Born
 - Internal H and therefore internal M derived via Born

The forward model or estimated data is derived via an approximation which is either Born or Non-Linear Approximator. For the LN, one can assume that H is derived by LN or M is derived by LN.

Minimization Technique How to find the minima

Quasi-Newton

- approximate 2nd derivatives for Hessian matrix
- efficient when Hessian of previous iteration utilized
- poor results if Hessians from sequential iterations very different

Conjugate Gradient

- gradients used to define search direction
- minima by line search
- terminates when gradient reaches a minimum value

Starting Model

Get starting model from O A .pev file C A permeability distribution (.mag) file Customize C A dataset Select a dataset File name: List of starting model settings # Center X(m) Center Y(m) Center Z(m) Size X(m) Size Y(m) 0.000000 0.000000 -67.500000 360.000000 270.000000 • Edit starting model-Modify a prism. O Add a prism. # of Prisms 11 - Geometry and susceptibility-Center (m): Size (m): Eular angles (degree): Susceptibility (X)

x 360 45 0 0 Strike Χ. 0 270 0 Dip. Ψ. ψ. -67.5 135 Plunge 0 z z Apply. Apply size to all Apply angles to susceptibility to prisms all prisms all prisms Add a prism Modify a prism Delete a prism Next > Cancel Help < Back

- User defined prisms
- From a forward model
- From a previous inversion

Optimized Inversion Style

Optimization inverstion	
Mode Minimiz Minimiz Qua Qua C H via LN C Qua C Con Weighting function and factors	ation technique si-Newton Constrained Quasi-Newton jugate Gradient Conjugate Gradient
• w = 1 ×0 = 0 A0 = 0 A0 = Ax = 1 Susceptibility constraints	z0 = 0 Ay = 1 $Az = 1Search parameters$
0 <= × <= 3 Cells with susceptibility value equal to 0 will not be output to permeability distribution (.mag) file. Data usage: 100 Lambda: 100	20 Maximum iterations 0.1 Gradient tolerance 0.001 Susceptibility tolerance 0.001 Target misfit
< Back	Next > Cancel Help

Physical Mode

- internal scattering assumption
- Minimization Technique
 - mathematical technique for minimizing the functional
- Model weights
 - regularization weights
- Susceptibility Constraints
- Gradient tolerance
- Susceptibility tolerance
- Target Misfit
- Lambda data misfit vs model characteristics

Run status Action Iteration Number = 4 Invert Misfit = 4.107100579977388E-001 Invert Grad_Misfit = 0.717327263458997 Invert Shift = 3.798578248706036E-001 Invert RMS Error >> 5.779676024470947 Invert Grad_Misfit = 7.335744286816955 Invert Auxiliary files Invert Input permeability distribution (mag) file for search area View .mag output View .grd output View .grd output Output permeability distribution (mag) file for starting model Write .pev file Output permeability distribution (mag) file Browser [igmaV6.3\Examples_Release\3DMag_inverse\Inversion] Output to database Project name:	neral information Uutput	μ
Iteration Number = 4 Misfit = 4,107100579977388E-001 Invert Grad_Misfit = 6.717327263458997 >>>>FINAL_MISFIT VALUES Ules Misfit = 7.335744286816955 Terminating Optimization Invert Progress View .mag output Auxiliary files View .mag output Input permeability distribution (.mag) file for search area View .grd output Output permeability distribution (.mag) file Browser [::\Emigma\Emigma\E.3\Examples_Release\3DMag_inverse\Inversion_ Write .pev file Output Meshviwer (.grd) file Browser [igma\C.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output to database Project name: Survey name: Data set name:	- Run status	- Action
Progress View .mag output Auxiliary files View .grd output Input permeability distribution (.mag) file for search area Wite .pev file Output permeability distribution (.mag) file for starting model Write .pev file Output permeability distribution (.mag) file Browser [C:\Emigma\Emigma\6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output to database Project name: Data set name:	Iteration Number = 4 Misfit = 4.107100579977388E-001 Grad_Misfit = 6.717327263458997 >>>FINAL MISFIT VALUES<<<< MisFit= 3.798579248706036E-001 RMS Error >> 5.779676024470947 Grad_Misfit = 7.335744286816955 Targing flow Opticipation	Invert Clear run status
Auxiliary files Input permeability distribution (.mag) file for search area Input permeability distribution (.mag) file for starting model Output permeability distribution (.mag) file Browser C:\Emigma\Emigma\6.3\Examples_Release\3DMag_inverse\Inversion_ Output Meshviwer (.grd) file Browser igma\6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output to database Project name: Survey name: Data set name:	Progress	View .mag.output
Input permeability distribution (.mag) file for starting model Write .pev file Output permeability distribution (.mag) file Browser [C:\Emigma\Emigma\6.3\Examples_Release\3DMag_inverse\Inversion_ Output Meshviwer (.grd) file Output Meshviwer (.grd) file Browser igma\6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output to database Project name:	Auxiliary files Input permeability distribution (.mag) file for search area	View .grd output
Output permeability distribution (.mag) file Browser C:\Emigma\Emigma\6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output Meshviwer (.grd) file Browser igma\6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output to database Project name: Survey name: Data set name:	Input permeability distribution (.mag) file for starting model	Write .pev file
C:\Emigma\Emigma\b.3\Examples_Release\3DMag_inverse\Inversion_ Output Meshviwer (.grd) file igma\6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output to database Project name: Survey name: Data set name:	Output permeability distribution (.mag) file Browser	
igmaV6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd Output to database Project name: Survey name: Data set name:	C: \Emigma \Emigma \Emigma \Emigma \E.3\Examples_Helease \3DMag_inverse \inversion_ Output Meshviwer (.grd) file	
Output to database Project name: Survey name: Data set name:	igmaV6.3\Examples_Release\3DMag_inverse\Inversion_Dyke\perm.grd	
Survey name: Data set name:		
	Project name:	
	Output to database Project name: Survey name: Data set name:	
	Output to database Project name: Survey name: Data set name:	
	Output to database Project name: Survey name: Data set name:	

Misfit parameter progress

Meshviewer

