Airborne EM Data Comparisons

in a sedimentary basin

Exploration 2007

September, 2007

Why

EXTERNAL quality control, modeling and interpretation

should be considered
Test area Northern Arizona

over 3000m of sedimentary sequence
sandstones, shales, limestones, conglomerates
Summary of Data

The following data is analyzed:

- **GeoTEM** – *with correct pulse, dipole moment and Tx-Rx offsets*
- **MegaTEM** – *with correct, pulse, moment and Tx-Rx offset*
- **MegaTEM re-windowed** – 20 off-time channels
- **VTEM** – 2 flights - suitable and unacceptable waveform
The MegaTEM and GeoTEM surveys lines are almost identical while the VTEM lines appear to be nearly running half way between the Fugro flight lines.
VTEM Comparison – Waveforms

The waveforms from the two different flights are shown. The waveform plots show the coil response, which is the derivative of the current. A typical current pulse is shown to the right.

The May 8 waveform exhibits unwanted pulses in the on-time, and has a much longer pulse width. A new waveform was used on the May 14 flight. A shorter pulse width (4.56 msec) was required to remove multiple pulses.

multiple source pulses leads to increased ambiguity in the models

May 8 Waveform

May 14 Waveform
A comparison of the VTEM data on May 8 and May 14 is shown for time channels 3-7 across Line 1000. There is some difference in the response across the line on the two dates.

- Channel 3
- Channel 4
- Channel 5
- Channel 6
- Channel 7
At later times, there are also some significant differences in the response across the line between May 8 and May 14. An offset for the anomaly at the north end of the lines is observed. A possible explanation is given on the following page.

- Channel 10
- Channel 11
- Channel 12
- Channel 13
- Channel 14
The shift in the location of the anomaly could be due to flight direction. The lines were flown in different directions on May 8 and May 14. The co-ordinates of the data point correspond to the plane, not the transmitter and receiver, which are at an angle from the plane. If the flight direction is north, the plane will be further north when the loop is over a given feature than when it is flying south, and the anomaly would appear north of where it would appear on a line flown south. This corresponds to what is seen on the VTEM data on the two different days: the anomaly appears further to the north on May 8, when line 1000 was flown north. The difference between the location of the anomaly on the two days is 32 m, corresponding to an angle of 22° from vertical for a 42.4 m tow cable. This is a reasonable angle based on photos of the VTEM system; however, typical values of this angle were not provided.

Above is a schematic of this situation, showing how the plane would be at different locations when the system is over a target, depending on flight direction.
The GeoTEM data along three lines in the test area is shown. A large response is noted to the north part of the line, and as with the VTEM data, alternate lines appear to track each other in Hz.
The MegaTEM and GeoTEM data are compared for Channel 9 (4th off-time channel) in the same area. Note that Lines 12470 for GeoTEM is nearly in the same position as MegaTEM line 10120, Lines 12480 (GeoTEM) and 10130 (MegaTEM) are also nearly the same. The general trends in the Hx component are similar for both, although the peaks of the anomalies do not quite line up.
In Hz, Lines 12470 (GeoTEM) and 10120 (MegaTEM) show similar trends, although 12470 is closer to 10120. A similar situation is observed with 12480 and 10120.

It is noted that 12470 and 10120 were flown in opposite directions, as were 12480 and 10110. Thus, the trends in response appear to be related to flight direction.
Model and Geology

A model approximating the response of the different airborne surveys was developed. It was used to study the variation in response across the airborne lines, and the sensitivity of the response to different layers.

Model 91b

<table>
<thead>
<tr>
<th>Resistivity (Ω m)</th>
<th>Thickness (m)</th>
<th>Depth to Bottom (m)</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>103</td>
<td>103</td>
<td>Sedimentary Layers</td>
</tr>
<tr>
<td>942</td>
<td>100</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>79</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>2900</td>
<td>40</td>
<td>322</td>
<td>Limestone</td>
</tr>
<tr>
<td>2.95</td>
<td>74</td>
<td>396</td>
<td>Conductor</td>
</tr>
<tr>
<td>0.7753</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*To better fit the MegaTEM and GeoTEM data, an overburden resistivity of 150 Ω m was used (Model 91b_150).
The re-windowed MegaTEM data (with 20 off-time channels) is compared with the response from Model 91b_150 along 10130. The change in altitude of the aircraft has little effect on the variation in response observed across the line.

- Data (Line 10130)
- Model 91b_150 (Line 10130)
The GeoTEM is compared with the response from Model 91b_150 along 12480. The change in altitude of the aircraft has very little effect on the variation in response observed across the line, as seen in the MegaTEM data.
The VTEM data along Line 1000 is compared with the response from Model 91b, a layered earth model. Although some correlation is noted between changes in altitude and the measured response, much of the variation appears to be due to lateral variations in the subsurface.
The off time channels are different for the various airborne systems. A comparison of the position of these channels can be made by observing the decays below. The re-windowed MegaTEM data has more time channels in earlier times than the initial MegaTEM data.
Decay curves at two points along Line 10130. At 4062553, the decay of the data appears to be more rapid at mid-late times.
Removing the conductive layers at depth from Model 91b_150 has a significant effect on the decay curve across all time channels. Removing the resistor above the conductive layers has an effect at mid-late times.
Although Model 91b_150 is a decent fit for the data along 10130 for Hz, it is a poor fit for Hx at most data points (see 4062213 above), having too slow of a decay. The Hx data also appears fairly noisy beginning at mid-times.
GeoTEM Decay

GeoTEM decay curves at two points along Line 12480.

Model 91b_150

<table>
<thead>
<tr>
<th>Resistivity (Ω.m)</th>
<th>Thickness (m)</th>
<th>Depth to Bottom (m)</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>103</td>
<td>103</td>
<td>Sedimentary Layers</td>
</tr>
<tr>
<td>942</td>
<td>100</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>79</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>2900</td>
<td>40</td>
<td>322</td>
<td>Limestone</td>
</tr>
<tr>
<td>2.95</td>
<td>74</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>0.7753</td>
<td></td>
<td></td>
<td>Conductor</td>
</tr>
</tbody>
</table>
If the conductive layers at depth are removed from Model 91b_150, it affects the decay curve across all time channels. Removing the resistor above the conductive layers affects the response except at very early times.
For the GeoTEM data, Hz and Hx show similar trends, although the Hx data appears noisy at mid and late times.
VTEM Decay

Decay curves at two points along Line 1000. Some variation in the decays is noted across the area. At 4062551, the decay at late times suggests a more conductive area at depth.
The conductive layers at depth have a significant effect on the response from the model. When the bottom two conductive layers are removed from Model 91b, it has a significant effect on the response, even at fairly early times (channels 7 and 8).

When the resistor (2900 Ω m) is removed from the model, it affects the response at mid-late times.
As noted, the resistivity of the overburden was adjusted slightly in the VTEM vs the GeoTEM/MegaTEM models: the resistivity of the top layer used in the model was 100 Ω m for VTEM, and 150 Ω m for MegaTEM/GeoTEM. The reason for this discrepancy is not known, and limited data analysis and modeling has been done thus far. The response of the model is very sensitive to the resistivity of this layer, as shown for the VTEM and MegaTEM data (particularly noticeable for VTEM). Changing this resistivity affects all but the very late time channels.
This 7-layer Marquardt inversion is for the original MegaTEM data (with correct windows and pulse, but not rewindowed). The resistivity of the bottom three layers were fixed at 3000 Ω m, 25 Ω m and 0.7753 Ω m.
MegaTEM Inversion

Channel 9

Marq_Inv_7

Channel 14

Data (Line 10120)

Marq_Inv_7 (Line 10120)
The rewined MegaTEM data was inverted using an 8-layer Marquardt inversion. The resistivity of two of the layers were fixed at 3000 Ω m and 0.7753 Ω m.

The first time channel was not inverted
MegaTEM Inversion (rewindowed)

Channel 5

Marq_Inv_8

Channel 15

Data (Line 10120)

Marq_Inv_8 (Line 10120)
The GeoTEM data was inverted using an 5-layer Marquardt inversion. The resistivities of the two bottom layers were fixed at 3000 Ω m and 200 Ω m. The north/south locations of the two tanks are noted with arrows.
GeoTEM Inversion

Channel 9

Marq.Inv.5

- Data (Line 12470)
- Marq.Inv.5 (Line 12470)

Channel 14
An 8-layer Marquardt inversion on the VTEM data is shown. Note that the high resistivity layer is much thinner than in the inversions for the other systems. *As seen in the decays, the VTEM survey was not as sensitive to this layer as the other surveys.
VTEM Inversion

Channel 5

Marq_Inv_8

Channel 15

Data (Line 900)

Marq_Inv_8 (Line 900)
many critical issues when interpreting and inverting airborne EM data in sedimentary environments

careful control and analyses of the data should be carried out

pre-modeling to determine appropriate system settings

careful data control

and then excellent results can be obtained by virtually any of the present systems
GeoTEM 2006

- comparison of 2006/2007 original data
- comparison of 2006 original/rewindowed data; discuss noise
- comparison of time channels with 2006 rewindowed data + fit with model
- inversions for 2006 data – original
inversions for 2006 data – rewindowed
A test GeoTEM survey was also conducted in 2006. A comparison of the data for these two surveys for a few time channels is shown (Line 12470/10120). Note that there are some differences in response between these two surveys.

*Decays are typically cleaner in the 2007 data.
Plots of the data along 10120 are shown for the original data and the rewindowed data at two similar times. The rewindowed data appears much noisier across the profile. This may be due to different processing – e.g., filtering that was not applied when the data was rewindowed.
The rewinded data contains more time channels in early off times, as seen in the decays. Comparisons of the original and rewinded data with Model 91b_150 are shown for 4062197 (north) along 10120.

- **Data**
- **Model 91b_150**
Two inversions performed on the original GeoTEM data (Line 10120) are shown. In the Marquardt 6 inversion, Model 91b_150 was used as a starting model, and the resistivities of the fourth and sixth layers were kept constant at 2900 Ω m and 0.7753 Ω m. In the Marquardt 5 inversion, the bottom two layers were kept constant at 2900 Ω m and 50 Ω m. These show quite a different depth to the resistive layer, depending on how conductive the layer below it is.
Before inverting, a Gaussian filter was applied to the data to remove some of the noise (see slide 44). The filtered data was then decimated. Inversions were performed on the rew-windowed data with the same parameters as the original data. These inversions show more consistent results for the depth to the resistive layer and in the resistivities above this layer, than do the inversions on the original data. The rew-windowed data seems to provide better resolution of the shallow subsurface.
Summary and Conclusions

• The anomalies appear to be shifted on every other line. This seems to be due to differences in response depending on which direction the aircraft was flying.

• There is a strong anomaly to the north part of the Findlay tank area seen on all airborne surveys (around 4062600 north), which may be near to where there is a dead powerline. There is a broader anomaly to the south part of the area (around 4062000 north), which appears to be approximately where one of the tanks is. This anomaly is most clear in the VTEM data.

• Little variation in response is due to changes in altitude of the aircraft.

• Modeling suggests a conductor at depth (~300 m), and the response is fairly sensitive to this. There also appears to be a fairly resistive layer above it (limestone?).

• All three airborne surveys suggest similar subsurface structure.

• Hx and Hz do not always agree for the MegaTEM data.