Traditional EM & onshore hydrocarbon exploration

Andi Pfaffling – NGI, Norway Ross W. Groom – Petroseikon, Canada

Non-Seismic Methods Workshop Bahrain, 13 Oct. 2008

EM / resistivity methods and the Oil patch

Statham, 1936: Electric earth transients in geophysical prospecting. *Geophysics* Vol. 1

Fundamentals

• Frequency domain EM

• Time domain EM

Diffusive wave propagation !!

- Electric fields
- Magnetic fields

- Natural sources
- Transmitter based systems

The model

- Reservoir
 - 2 by 2 km, 200 m thick
 - 200 Ωm @ 500 m depth
- Background
 - 30 Ω m sedimentary basin
- Fault
 - 10 km long, 5 Ω m
 - Extending from 25 to 225 m depth
- Clay lense
 - 800 by 200 m, 10 m thick
 - 0.04 Ωm @ 100 m depth

Reviewed methods

- Magnetotellurics
- Controlled source audiomagnetotellurics
- Long offset transient electromagnetics
- Fixed loop transient EM
- Dipole-dipole arrays as...
 - Direct current
 - Frequency domain induced polarization
 - Time domain induced polarization

Modelling tool used

• 3D integral equation multimethod modelling package

Habashy, T.M., Groom, R.W. and Spies, B.R. [1993] Beyond the Born and Rytov Approximations: A Nonlinear Approach to Electromagnetic Scattering, Journal of Geophysical Research, 98, 1759-1775.

Magnetotellurics (MT)

MT survey layout & impedance (Zxy) plot

Frequency (0.01 – 10k Hz)

Zxy depth slices, reservoir & fault

Zxy depth slices, reservoir & lens

MT impedance response

- Very small response
- Near surface distortion

Line 1000N

MT Tipper response

- Tipper below resolution
- Also heavily distorted

Controlled Source Audio-MT (CSAMT)

- Tx 10 km wire, 6 km away
- Rx as in MT
- Frequency 0.1 100 Hz

CSAMT impedance & electric field

Zxy background

petroseikon

Traditional CSAMT configuration

petroseikon

- Sensitivity small
- Source effects dominate
- Big distortion from near surface

Long Offset Transient EM (LOTEM)

Tx

- Tx 10 km wire, 6 km away
- Rx dipoles Ex & Ey
- Step response 0.1 60 ms

LOTEM decay for two models

LOTEM Ex maps

- Near surface anomaly beats reservoir in magnitude
- Reservoir footprint still indicative

Timeslice 2ms background

Timeslice 2ms reservoir & NS lens

LOTEM Ex sections

 Need to be far enough away from near surface features

Section location on timeslice

0 -100

-200 -300 -400 -500 -600

Pseudo section reservoir & NS lens

Fixed loop TEM

- 2x2 km loop transmitter
- Step response 0.1 60 ms
- 300m dipole receivers

Fixed loop TEM decay

Loop source response

Position of section or map on map or section respectively

Loop source sensitivity

- Same issues as other methods
- Removal of source field possible
- Slightly less near surface distortion due to loop source

scattered E-field sections for reservoir and reservoir & NS lens

Interim resume

- Near surface inhomogeneities distort anomaly, especially electric field
- No fundamental difference between frequency and time domain

Dipole – dipole configurations

- electric resistivity tomography
- Induced Polarization
- MTEM, FTEM, etc...

DC apparent resistivity pseudo sections

Good sensitivity to resistivity contrast

2000 2500 3000

Reservoir @ 500m depth

30 Ωm Log10 (Ohm·m)

45 Ωm

1.65

1.60

1.55

1.51

1.46

Results shown at 0.01 Hz frequency domain IP

IP response

Reservoir Clay lense polarizable 500 1000 1500 2000 2500 3000 3500 -3500 -3000 -2500 -2000 -1500 -1000 -500 -3500 -3000 -2500 -2000 -1500 -1000 -500 500 1000 1500 2000 2500 3000 0 0 350 -300 -300 -400--400--500--500 107 -600--600 -700--700 -800--800 -900--900 -1000--1000--1100--1100--1200--1200 81 -1300--1300 -1400 -1400 -1500--1500 Reservoir polarizable Background polarizable 56 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500 -300 -300 -400--400 -500--500--600 -600--700--700 30 -800--800 -900 -900 -1000 -1000 -1100--1100--1200--1200--1300--1300--1400--1400--1500--1500mrad

Pseudo sections of IP phase [mrad] @ 0.1 Hz, Cole-Cole parameter: c=0.5, m=0.3, T=1s

Near surface inhomogeneities

• Also very strong distortion

Electrode spacing

• Size matters !

Reservoir & clay lens with 300 m bipole size

So is there a winner?

- target resolution ~ inhomogeneities
- Frequency domain <> Time domain
- Survey geometry crucial

Where is the real challenge?

- Processing / inversion / interpretation
- Integration with seismic et al. crucial
- Further approaches not considered here e.g.
 - Borehole surveys
 - AEM for proxies

