## On Inversion Of Gradient Magnetic Data for Detection of Multiple Buried Metallic Objectives

Ruizhong Jia, PetRos EiKon, Concord, Ontario, Canada R. W. Groom, PetRos EiKon, Concord, Ontario, Canada SAGEEP 2004

- SAGEEP 2003 we illustrated the use of combining the Euler Deconvolution with inversion for the magnetization vector
- Extending to a processing method for multiple objects of different sizes
- Synthetic Example
- Example over a Test Site
- All results and graphics generated in *EMIGMA*©



## **Processing Overview**

## • Euler Depth Estimator

i) focus on small structural index range – e.g 1.5-2.5

ii) FFT or simple difference horizontal gradients

iii) Measured or FFT Vertical gradients

## • Process Euler Solutions

a) Rodin Algorithmb) Statistical Location Processing

•Magnetization Vector Inversion



#### Flow Chart for Implementing Euler Depth Estimator and Vector Inversion

#### **Step 1. Data preparation**

Gradients have to be calculated if not measured. Vertical derivative can be computed via FFT. Horizontal derivatives can be computed either by simple difference or FFT.

#### **Step2 Generate Initial Euler solutions**

This involves setting appropriate moving window size, structural index indicating the type of anomaly. Any solution which has positive z, or whose distance from its respective moving window is over certain value is discarded.

#### Step 3. Post-process Euler Solutions by applying Rodin Algorithm

This process selects/eliminates solutions according to the spatial distribution of initial coarse Euler solutions. Only those solution having relatively high geometric concentration will be kept.

#### Step 4. Determine location of each individual body

Based on the spatial distance to distinguish buried bodies, clusters are split into groups, each of which identifies a body. The location of this body is calculated by means of statistics.

#### **Step 5. Apply Magnetization Vector Inversion**

A local search grid is set for each individual body and a subset of measured total data is selected. By performing an automatic iterative target volume modification according to a prescribed volume range of the buried objectives - optimum solutions giving the locations as well as the internal magnetization vectors of buried objects are produced.



#### Synthetic Example - .5m x .5m data sampling- Fixed search Grid with a range of SI

| Body | X  | Y  | Z    | dip | decl | М | Size  |
|------|----|----|------|-----|------|---|-------|
| 1    | 0  | 8  | -3   | 45  | 45   | 6 | 0.008 |
| 2    | -8 | 8  | -2.5 | 80  | 120  | 7 | 0.008 |
| 3    | 8  | -8 | -2   | 35  | 70   | 7 | 0.008 |



|                       | Body | X     | Y     | Z     |
|-----------------------|------|-------|-------|-------|
| Actual locations      | 1    | 0     | 8     | -3    |
|                       | 2    | -8    | 8     | -2.5  |
|                       | 3    | 8     | -8    | -2    |
| True B and dB         | 1    | 0.01  | 7.87  | -3.10 |
|                       | 2    | -7.97 | -7.97 | -2.48 |
|                       | 3    | 7.98  | -7.99 | -1.97 |
| noisy B and FFT dB    | 1    | -0.01 | 7.59  | -2.64 |
|                       | 2    | -7.82 | -7.97 | -2.58 |
|                       | 3    | 7.86  | -7.97 | -2.18 |
| noisy B and FFT dB/dz | 1    | -0.13 | 7.87  | -2.51 |
| simple difference     | 2    | -7.97 | -7.95 | -2.52 |
|                       | 3    | 7.92  | -7.80 | -2.15 |

- All results relatively good



Synthetic Example - Vector Inversion – Course Grid 1m x 1m data sampling

-For the fine grid VI slightly improves the Euler results-For a course grid the Euler solutions are poorer for noisy data

| Vector 2 | Inversion | Results | by | Processing    |
|----------|-----------|---------|----|---------------|
|          |           |         | -  | $\mathcal{O}$ |

|                      | Body | X center | Y center | Z center | dip  | decl  | Μ    | Cell Size |
|----------------------|------|----------|----------|----------|------|-------|------|-----------|
| Actual               | 1    | 0        | 8        | -3       | 45   | 45    | 6    | 0.008     |
|                      | 2    | -8       | 8        | -2.5     | 80   | 120   | 7    | 0.008     |
|                      | 3    | 8        | -8       | -2       | 35   | 70    | 7    | 0.008     |
| True total<br>field  | 1    | 0.02     | 8.02     | -2.95    | 45.0 | 44.6  |      |           |
|                      | 2    | -8.0     | -8.17    | -2.47    | 73.1 | 148   | 17.4 | 0.003     |
|                      | 3    | 7.97     | -8.02    | -1.99    | 36.5 | 71.1  | 17.1 | 0.003     |
| Noisy total<br>field | 1    | -0.02    |          | -3.07    | 48.2 | 63.8  | 28.1 | 0.002     |
|                      | 2    | -8.0     | -8.02    | -2.47    | 77.9 | 132.0 | 17.4 | 0.003     |
|                      | 3    | 7.97     | -8.02    |          | 37.6 | 70.6  | 14.8 | 0.003     |



## Layout of Buried Objects, Columbia Test Site, University of Waterloo



<u>Filled circle</u> vertical 45 gallon drum Volume .21m<sup>3</sup> ,height 0.92m

**Filled rectangle** vertical sheet 8m by 1m by 0.1m

Segment of line horizontal pipe diameter 0.1m



## Layout of Buried Objects, Columbia Test Site, University of Waterloo



Cesium Magnetometer (SMARTMAG) – 1m x 0.1m data sampling



## 128 by 256 FFT grid with grid cell size 0.4m by 0.2m



## Horizontal Derivative (North) from FFT

**Cesium Magnetometer (SMARTMAG) – 1m x 0.1m data sampling** 



## **On Inversion for Detection of Multiple Buried Metallic Objectives** <u>Step2 Generate Initial Euler solutions</u>

Moving window - 5m by 5m, Structural index - 0.5 to 1.5 by 0.25 55375 solutions



## On Inversion for Detection of Multiple Buried Metallic Objectives Step2 Generate Initial Euler solutions

Moving window - 5m by 5m, Structural index - 2.5 to 3.5 by 0.25 74667 solutions



## Step3 Rodin Processing



## **Step4** Statistical Removal Processing

Determine location of each individual body – 1.5m distinguishing distance



## **Step4** Statistical Removal Processing



#### 2.5m distinguishing distance

## 1.5m distinguishing distance

35\_ 30\_ 15\_ 5\_ Ó 

## **Step4** Statistical Removal Processing

Euler -> Rodin -> Jia SI – 0.5 – 3.25, 1.5m distinguishing distance



## **Step5** Magnetization Vector Inversion

## **Locations and Depths**

At each individual processed solution, the total field data is automatically retrieved from a 2.5m by 2.5 m square centered on this solution and inverted for M(x,y,z)



# Solutions about 2



## **Step5** Magnetization Vector Inversion

Locations and Depths – Volume Range (.05,1.9m<sup>3</sup>)



## **Step5** Magnetization Vector Inversion



-Jia depth to top good for shallow drums -VI depth to center good



Top

0.25

0.75

1.25

1.75

.71

## **Step5** Magnetization Vector Inversion

## Locations and Depths – Multiple Drums



|     | Jia  | VI   | Ctr | Top  |
|-----|------|------|-----|------|
| GD1 | 0.53 | 1.67 | 1.2 | 0.75 |
|     |      |      |     |      |
| GD2 | 0.77 | 1.48 | 1.2 | 0.75 |

-Jia depth to top good -VI depth to center good too deep - multiple M ?, constrain V ?



## Step5 Magnetization Vector Inversion

## Locations and Depths – Pipes – D=.1m



-Jia depth to top useful -VI depth to center good for P3 only - multiple M's? constrain V ? Larger grid?



## **Step5** Magnetization Vector Inversion

## Locations and Depths – Sheets – h=1m



-Jia depth to top quite good – error about .2m -VI depth to center good for S3, S1,S4 poor - multiple M's? constrain V ? Larger grid?



## On Inversion Of Gradient Magnetic Data for Detection of Multiple Buried Metallic Objectives

Ruizhong Jia, PetRos EiKon, Concord, Ontario, Canada R. W. Groom, PetRos EiKon, Concord, Ontario, Canada SAGEEP 2004

## **CONCLUSIONS AND DIRECTIONS**

Preliminary Euler useful
Correct use of Structural Index for Euler
Rodin post-processing very helpful
Statistical grouping gives initial location with good horizontal positioning and approximate depth
Vector Inversion quick and useful but ....

- $\checkmark$  Use of constrained volumes
- ✓ Distribution of magnetization
- ✓ Use of multiple Euler solutions from different SI

