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Algorithms for de-rotating 
2 horizontally offset magnetometers 

with 1 vertically offset magnetometer



  

3 TMI measurements at each station in the local 3 TMI measurements at each station in the local 
frame (platform) originating at (Px,Py,Pz)frame (platform) originating at (Px,Py,Pz)

Sensors
dv

dw

(Px,Py,Pz)
(starboard)

(port)

(lower)

In this configuration, the 3 sensors are set on a  rigid frame which varies its 
orientation continuously during flight. The problem is how to obtain gradients 
in some useful and consistent coordinate system.

Locally ( ie. at each position), the sensors measure derivatives in somewhat 
random orientations. Unless, the gradients can be de-rotated to a consistent 
frame then they have limited usefulness.



  
Global  vs. Platform (local) FrameGlobal  vs. Platform (local) Frame

 

i.e. pitch, roll, heading

Normally gradient vectors can be orientated easily from a local frame to a more 

general geographic, geomagnetic or grid system if the orientation of the rigid

system and the 3 gradient vectors are known. Mathematically, 

(x,y,z) Grid , 
Geomagnetic,

Geographic

(u,v,w) platform

The orientation is represented mathematically by:



three equations in four unknowns                three equations in four unknowns                

Platform Transverse GradientPlatform Transverse Gradient

Platform Vertical GradientPlatform Vertical Gradient

Two of the platform derivatives derived via the following equations:

At each data point, we wish to recover the 3 gradients in the

grid system. i.e., M/ x, M/ y, and M/ z. However,

!!??



The derivative in the direction of flight (in-line) has no direct

measurement for this configuration. Normally, it is estimated by the 

difference in 2 in-line average measurements, i.e.
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Where,                    are the average M at each data point.

However, using this estimate of the in-line derivative with the other local 
derivatives to de-rotate the gradients as if in a fixed rigid system presents 
problems. As will be seen later.

2,1 MM



fourth equation !fourth equation !  

Previous observation at (Px ,Py ,Pz )Previous observation at (Px ,Py ,Pz )

Flight PathFlight Path

Another approach is to use the notion of a directional derivative



  

Simulated Flight PathSimulated Flight Path
roll, pitch, heading, altitude variations and thus roll, pitch, heading, altitude variations and thus 
magnetometer  frame orientations generated magnetometer  frame orientations generated 
semisemi-- randomlyrandomly

Simulated data mathematically generated Simulated data mathematically generated 
allowing analytic gradients for benchmarkingallowing analytic gradients for benchmarking

In this example, the locations of the center of the sensors vary pseudo-randomly 
along a prescribed flight path and the orientations of the 3-sensor rigid system 
are allowed to vary at each data position in a smooth but random fashion. The 
data at each sensor is generated by simulation at the location of that sensor by 
means of PetRos EiKon s 3D Magnetic modeling functions.
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The determinant at each point of the 4 eqn system for de-rotation
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Flight Path North

For the simulation, the flight path is generally 

North and here we show the simulated transverse

measured derivative (blue) against the 

de-rotated derivative (red)
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Easting vs. Analytic

Here the derived derivatives from the de-rotation

are shown against the true derivatives in the grid

east direction.



  
Section of a Single survey line (LINE10) with Section of a Single survey line (LINE10) with 
approximately 620 stationsapproximately 620 stations  

Simulated data is generated on three profiles Simulated data is generated on three profiles 
which follow the trajectories of the three which follow the trajectories of the three 
sensors based on given flight path and sensors based on given flight path and 
orientation informationorientation information  

> (x,y,z), pitch, roll, heading are from > (x,y,z), pitch, roll, heading are from 
real datareal data

For this example, we utilize actual data locations and sensor

orientations but use synthetic data to check the processing technique



 

N

Here we show the synthetic model and the actual flight path with elevation for synthesis.
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Note: global (x,y,z) = local (-v,u,w) 
approximately
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(de-rotated)

The processing technique significantly 

smoothes the derivatives as well as un-mixing 

the horizontal derivatives.
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Note: global (x,y,z) = local (-v,u,w) 
approximately
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Measured corrected data Measured corrected data 

(LINE10, LINE70)(LINE10, LINE70)  

Processed to derivatives based on given Processed to derivatives based on given 
flight path and orientation informationflight path and orientation information

Here we examine several effects of examining or using derivatives 

without correct processing
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The transverse or easting derivative exhibits a negative-
positive response across 2 anomalies which are not seen in 
the  un-processed derivatives
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The unprocessed in-line derivatives are overestimated. 

These amplitudes result from mixing with the 

other derivatives.
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In the following figures; 

- Instantaneous collected derivative prior to processing

- Simple rotation of in-line based on measured derivatives being in a fixed frame

- Alternative processing

- derivative in global ( grid ) frame de-rotated derivatives

+    - Alternative simple rotation technique
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1) All processed signals from the TMI data are generated by some transformation from

the TMI derivatives (e.g. vertical derivatives, analytic signal, reduction-to-the pole). 

Traditionally, these derivatives are derived from Fourier transform of the TMI generally

by FFT techniques.

2) PetRos EiKon has extended its simulation algorithms to synthesize the derivatives of the 

TMI. These derivatives are not calculated by difference techniques from data at different 

positions on the grid but rather by extending the quasi-analytic formulation to calculate

instantaneous (by position) derivatives at each data point. This is done by extending the

Integral Equation formulation for the components to spatial derivatives of the components.

The extensions are available for the normal Born calculation ( magnetization parallel to 

Earth s field) and for non-linear effects ( e.g. magnetic channelling, de-magnetization, 

interacting structures, remanent magnetization, etc).

Combining these two techniques in our newest software release allows the investigation of

many aspects of traditional TMI processing. We will examine a couple of aspects here.



The model for this study is a thin

dyke, 1km in length, striking N-S.

The inclination of the Earth s field is

75 degrees and the declination is 20 

degrees East of North. The intensity

is 52,500 nT.

The survey area is 1575 x 1575m,

profile lines are 25m apart and data

points are 25m apart. 

For this example, the synthetic data is determined on a regular grid to illustrate

varies features.



Here we display the simulated TMI. The interpolated

data is on a grid which is exactly that of the simulated 

data points.

Note the asymmetry in the TMI response due to the

inclination and declination of the earth s field. 

The dyke comes to within 5m of the earth s surface and

has a depth extent of 500m.

TMI Simulated



Here we display the simulated derivates across a central line 

of the anomaly. And to the right, the contoured vertical gradients

on the original data grid.

TMI Simulated

Simulated Vertical Gradients



This is an  extremely interesting

Figure as it demonstrates that the

Technique of deriving derivatives

By FFT is more-or-less justified.

For those unfamiliar with the proof

Of such techniques, the original 

Mathematical justification for the

Fourier transforming for the 

Derivatives is not fully proven. Also,

Using an FFT for the Fourier 
transform is somewhat contrary 

Is proper mathematics.

However, as can be seen by 
comparison of the figures. The FFT 
technique does overestimate the

Vertical gradient and imparts 
variation which is also not actually 
in the derivative.

Vertical Gradient by FFT Vertical Gradient by 

Simulation



What is more interesting is the 
comparison of the in-line horizontal 
derivatives ( d/dx).

Note that the in-derivatives by FFT 
are significantly underestimate. 
Compare the figures and that of the 
x-y plot of this derivatives (2 pages 
back).

Note the rippling caused by the FFT 
as expected.

In-Line Gradient by FFT In-Line Gradient by 

Simulation



Cross-Line Gradient by FFT Cross-Line Gradient by 

Simulation

More disturbing is the comparison 
of the cross-line horizontal 
derivatives ( d/dy).

The FFT technique overestimates 
the derivatives at the ends 
(particularly in the south). Shows 
the rippling effects caused by the 
discrete samples in the FFT and the 
taper window at the edge of the 
grid. And cannot discriminate the 
object in the center but rather 
shows the object as 2 dipole like 
structures only at the ends. 
Compare the figures and that of the 
x-y plot of this derivatives (3 pages 
back).



Another interesting aspect of measuring gradients is the consideration that the 

derivatives may be used to enhance ( increase resolution ) of the data grids. This

would be accomplished by using interpolation techniques which would utilize the

measured gradients to increase the density of the interpolated output grid from the

profile data.

We can also investigate this 
aspects with the use of our new 
software tools. 

Here we will consider a new 
model beneath the previous data 
grid. The fault is reduced in size 
and another object (larger than 
the grid) is introduced which is 
sub-parallel to the data lines (i.e. 
almost parallel).



For this grid, both objects 
are clearly delineated by the 
25x25m data sampling. 



The use of the gradients does improve the resolution both of the E-W structure but 
almost more clearly outlines the N-S structure. Data sampling in these grids are not 
preciously as in the more dense grid (previous figure). However, the gradient gridding 
very closely reproduces the high density data .

TMI from 50x50m grid TMI from 50x50m grid using gradients



The use of the gradients does improve the resolution both of the E-W structure but 
almost more clearly outlines the N-S structure. Data sampling in these grids are not 
preciously as in the more dense grid (previous figure). However, the gradient gridding 
very closely reproduces the high density data .

TMI from 25x25m grid TMI from 50x50m grid using gradients



Conclusions:

3 pertinent examples of the use of magnetic gradients showing 
different aspects of our research project.

R.W. Groom, PhD


