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Algorithms for de-rotating
2 horizontally offset magnetometers
with 1 vertically offset magnetometer
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"Clobal” vs. Platform (local) Frame

Normally gradient vectors can be orientated easily from alocal frame to amore

general geographic, geomagnetic or grid system if the orientation of the rigid
system and the 3 gradient vectors are known. Mathematically

(u,v,w) platform

(x,y,z) Grid ,
Geomagnetic,
Geographic

The orientation is represented mathematically by:

Sy, W)

dx.y.2)




Two of the platform derivatives derived via the following equations:

Platformn Transverse Gradient

%{jﬁ-{l +M)-M,
: Platform Vertical Gradient

At each data point, we wish to recover the 3 gradients in the
grid system. i.e., oM/ 6x, dM/ oy, and 6M/ 6z. However,




In-Line Deriv

s

The derivative in the direction of flight (in-line) has no direct
measurement for this configuration. Normally, it is estimated by the
difference in 2 in-line average measurements, i.e.

oM M 1(Xy, Y1, 21) — M 2(X2, Y2, Z2)
ou \/(Xl— X2)* + (Y1— V2)° — (za— 22)°

Where, M 1 M » arethe average M at each data point.

However, using this estimate of the in-line derivative with the other local

derivatives to de-rotate the gradients as if in afixed rigid system presents
problems. Aswill be seen |ater.




Directional Derivative

Another approach isto use the notion of adirectional derivative

Hight Path
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Simulated Hight Path

— roll, pitch, heading, altitude variations and thus
magnetometer frame orientations generated
semi-randomily

— Simulated data mathematically generated
allowing analytic gradients fior benchmarking

I n thisexample, thelocations of the center of the sensorsvary pseudo-randomly
along a prescribed flight path and the orientations of the 3-sensor rigid system
are allowed to vary at each data position in a smooth but random fashion. The
data at each sensor isgenerated by smulation at the location of that sensor by
means of PetRos EiKon’s 3D M agnetic modeling functions.




solution determinant

The determinant at each point of the 4 egn system for de-rotation
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Transverse vs. Easting

Flight Path North

For the simulation, the flight path is generally

North and here we show the simulated transverse
“measured” derivative (blue) against the
de-rotated derivative (red)

transverse (-Mv)

easting (Mx) derived

Northing



Easting vs. Analytic
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easting (Mx) derived

easting (Mx) analytic

Northing
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Her e we show the synthetic model and the actual flight path with elevation for synthesis.




Gradient

Northing
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Note: global (x,y,z) = local (-v,u,w)
approximately

Northing
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no rotation relative to flight path

>Pitch follows flight path
>no roll

>heading follows flight path

Northing




no rotation relative to flight path
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Note: global (x,y,z) = local (-v,u,w)
approximately

Northing




Ciradient derivation from real data
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Here we examine several effects of examining or using derivatives
without correct processing
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Declination: 22.86 degrees East of North

East Derivat

Northing




Declination: 22.86 degrees East of North

North Derivative
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Declination: 22.86 degrees East of North

Vertical Derivati
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In thefollowing figures,

A - Instantaneous collected derivative prior to processing
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Fourier Transform Processing for Derivatives

1) All processed signalsfrom the TM| data are generated by some transfor mation from
the TMI derivatives (e.g. vertical derivatives, analytic signal, reduction-to-the pole).
Traditionally, these derivatives are derived from Fourier transform of the TMI generally

by FFT techniques.

2) PetRos EiKon has extended its ssmulation algorithmsto synthesize the derivatives of the




Fourier Transform Processing for Derivatives
- The Model




Fourier Transform Processing for Derivatives
— - TMI
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Fourier Transform Processing for Derivatives
- Derivatives

Simulated gradients
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Fourier Transform Processmg for Derivatives
- Derivatives
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Fourier Transform Processing for Derivatives
- Derivatives
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Fourier Transform Processing for Derivatives
o 002-001- 0 00T 00Z - Derivatives

- More disturbing isthe comparison
of the cross-line horizontal
derivatives ( d/dy).
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Gridding (Interpolation) @Iﬁ]]]]]ﬂa@

with Derivative Information

Another interesting aspect of measuring gradientsisthe consideration that the
derivatives may be used to enhance ( increase resolution ) of the data grids. This
would be accomplished by using inter polation techniques which would utilize the
measured gradientsto increase the density of the inter polated output grid from the
profile data.

" We can also investigate this
:-"."Il |'I'||“ ".'.'n. .' aspects with the use of our new
||| ||| '|||,.u ' g softwaretoadls.

Herewe will consider a new
model beneath the previous data
grid. Thefault isreduced in size
and another object (larger than
thegrid) isintroduced which is
sub-parallel tothe datalines(i.e.
almost parallel).




Gridding (Interpolation)
with Derivative Information
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For thisgrid, both objects
are clearly delineated by the
25x25m data sampling.



Gridding (Interpolation)
with Derivative Information
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The use of the gradients doesimprove theresolution both of the E-W structure but
almost more clearly outlinesthe N-S structure. Data sampling in these grids are not
preciously asin themore dense grid (previousfigure). However, the gradient gridding
very closely reproduces the high density “data”.




Gridding (Interpolation)
with Derivative Information
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The use of the gradients doesimprove theresolution both of the E-W structure but
almost more clearly outlinesthe N-S structure. Data sampling in these grids are not
preciously asin themore dense grid (previousfigure). However, the gradient gridding

very closely reproduces the high density “data”.
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