3 Examples of PetRos EiKon
research as pertains to the use
of measured TMI derivatives



Algorithms for de-rotating
2 horizontally offset magnetometers
with 1 vertically offset magnetometer




In this configuration, the 3 sensors are set on a rigid frame which varies its
orientation continuously during flight. The problem is how to obtain gradients
In some useful and consistent coordinate system.

Locally ( ie. at each position), the sensors measure derivatives in somewhat
random orientations. Unless, the gradients can be de-rotated to a consistent

frame then they have limited usefulness.

3 TMI rrigasurarnarits et 2zcr) stecior i) tne loce))
frarne originating et (P, Py, Pz)
M =M(Px,%-Av,g)

M, = M(E,,P,+v,F)

M, = M(P,,P ,P,-Aw)




cMou  cMdv = dMdw

ou 0z oy oz ow 0z

(v, W)
Ax.y.z)




Two of the local derivatives can be derived via the following equations:
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[n-Line Derivative
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Directional Derivative
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Simulated Flight Path

— roll, pitch, heading, altitude variations

— Magnetometer orientations generated semi-
randomly

— Simulated data mathematically generated
allowing analytic gradients for benchmarking




The determinant at each point of the 4 egn system for de-rotation




For the simulation, the flight path is generally
North and here we show the simulated transverse

“measured” derivative (blue) against the
de-rotated derivative (red)




Here the derived derivatives from the de-rotation

are shown against the “true” derivatives in the grid

east direction.
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For this example, we utilize actual data locations and sensor
orientations but use synthetic data to check processing technique
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Here we show the synthetic model and the actual flight path with elevation for synthesis.



Derivatives

Here we show the “actual” measured derivatives with actual sensor

orientations and data locations for the synthetic model.




1.20

Derived Derivatives
(de-rotated)

0.80 S

0.40

0.00

/ | The processing technique significantly
G smoothes the derivatives as well as un-mixing
the horizontal derivatives.

-0.80

0.00 2000.00 4000.00 6000.00 8000.00




1.20

0.80

0.40

0.00

-0.40

-0.80

0.00 2000.00 4000.00 6000.00 8000.00




1.20

0.80

0.40

0.00

-0.40

-0.80

0.00

2000.00

4000.00

6000.00

8000.00



Grraclient

Meazsurad “corractac” czjre)
— (LINELD, I_II\JE'/O)

Processad to derivatives nasad or) giver)
fligrit patn arid orientation inforrnatior)

Here we examine several effects of examining or using derivatives

without correct processing
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Declination: 22.86 degrees East of North
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Declination: 22.86 degrees East of North
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Declination: 22.86 degrees East of North
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O - Simple rotation of in-line based on measured derivatives being in a fixed frame
<& - Alternative processing
A - derivative in global ( grid ) frame — de-rotated derivatives
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Fourier Transform Processing for Derivatives

1) All processed signals from the TMI data are generated by some transformation from
the TMI derivatives (e.g. vertical derivatives, analytic signal, reduction-to-the pole).
Traditionally, these derivatives are derived from Fourier transform of the TMI generally
by FFT techniques.

2) PetRos EiKon has extended its simulation algorithms to synthesize the derivatives of the
TMI. These derivatives are not calculated by difference techniques from data at different
positions on the grid but rather by extending the quasi-analytic formulation to calculate
Instantaneous (by position) derivatives at each data point. This is done by extending the
Integral Equation formulation for the components to spatial derivatives of the components.
The extensions are available for the normal Born calculation ( magnetization parallel to
Earth’s field) and for non-linear effects ( e.g. magnetic channelling, de-magnetization,
Interacting structures, remanent magnetization, etc).



Fourier Transform Processing for Derivatives
- The Model




Fourier Transform Processing for Derivatives
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Fourier Transform Processing for Derivatives
- Derivatives

Simulated gradients
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Fourier Transform Processmg for Derivatives
: - Derivatives
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Fourier Transform Processing for Derivatives
- Derivatives
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Fourier Transform Processing for Derivatives
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- Derivatives

More disturbing is the comparison
of the cross-line horizontal
derivatives ( d/dy).

The FFT technique overestimates
the derivatives at the ends
(particularly in the south). Shows
the rippling effects caused by the
discrete samples in the FFT and the
taper window at the edge of the
grid. And cannot discriminate the
object in the center but rather
shows the object as 2 dipole like
structures only at the ends.
Compare the figures and that of the

nTesla/n X-Yy plot of this derivatives (3 pages

back).




G;idding‘ (Int;erpolation) ‘ @:ﬁ]ﬂ[ﬂb@

with Derivative Information

Another interesting aspect of measuring gradients is the consideration that the
derivatives may be used to enhance ( increase resolution ) of the data grids. This
would be accomplished by using interpolation techniques which would utilize the
measured gradients to increase the density of the interpolated output grid from the
profile data.

" We can also investigate this
‘|“| I'|'|'|'. .' aspects with the use of our new

| I|||I,.. & software tools.
| 1 !

Here we will consider a new
model beneath the previous data
grid. The fault is reduced in size
and another object (larger than
the grid) is introduced which is
sub-parallel to the data lines (i.e.
almost parallel).




Gridding (Interpolation)
with Derivative Information
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For this grid, both objects
are clearly delineated by the
25x25m data sampling.



Gridding (Interpolation)

with Derivative Information
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The use of the gradients does improve the resolution both of the E-W structure but
almost more clearly outlines the N-S structure. Data sampling in these grids are not

preciously as in the more dense grid (previous figure). However, the gradient gridding
very closely reproduces the high density “data”.
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Gridding (Interpolation)

with Derivative Information
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The use of the gradients does improve the resolution both of the E-W structure but
almost more clearly outlines the N-S structure. Data sampling in these grids are not

preciously as in the more dense grid (previous figure). However, the gradient gridding
very closely reproduces the high density “data”.
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