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Summary  

Gravity surveys have been used in the investigations of oil 
and mineral explorations. The inversion of gravity data 
collected over a three dimensional earth provides 
meaningful construction of density contrast models and 
therefore enable to extract more useful information from 
the gravity data. However, a major difficulty encountered 
in the utilization of 3D-gravity is the non-uniqueness of the 
inverted models. If a model is found to fit the data, there 
maybe many other models that fit the data to the same 
degree. For example, an anomaly near the earth surface 
may have the same response of an deeper anomaly with 
higher density. To overcome this difficulty, we utilize the 
Euler deconvolution technique to generate the locations of 
the gravity anomalies, which introduces prior information 
into the inversion process.   

Our 3D-gravity inversion method is analogous to that of Li 
and Oldenburg (1998). Basically, we subdivide a 3D-
volume directly beneath the survey area into rectangular 
cells each of which has constant but unknown density. We 
search for the optimum distribution of density in terms of 
minimizing objective function subject to fitting the 
observed data with a prescribed tolerance. The objective 
function includes terms that penalize the roughness in 
various spatial directions. We use a conjugate gradient 
technique to search for the optimum solutions while 
Oldenburg and Li (1994) utilize a linear subspace 
technique. The main advantage of the conjugate gradient 
technique is that it provides fast rate of convergence 
without storage of any matrices. We used our forward 
simulation algorithms to generate the vertical component of 
gravity field (Gz) on the ground surface and the airborne 
data Gzz which is the spatial vertical derivative of Gz.  We 
applied our inversion technique to synthetic ground data 
and airborne data.  The results of this work demonstrates 
that in some cases the Euler deconvolution technique plays 
important role in enhancing our 3D-gravity inversion.  

Introduction  

In 1998, Li and Oldenburg (1998) developed a 3D-gravity 
inversion algorithm to invert the vertical component of 
gravity field (Gz). They subdivided the earth into 
rectangular cells each of which has constant but unknown 
density. The densities are sought to minimize an objective 
function subject to fitting the observed data with a 
prescribed tolerance. The objective function includes terms 
that penalize the roughness in various spatial directions.  To 
resolve difficulty arising from the non-uniqueness of the 

inverted models, they introduced a depth weighing function 
into their objective function.   

The interpretation of gravity gradient data is becoming 
increasingly important as more gradiometer systems 
capable of acquiring reliable gradient data become 
commercially available. Talwani (2000) studied issues 
related to the inversion of gravity gradient data colleted 
with various gradiometer systems].  Another  approach for 
interpreting gravity data is Euler deconvolution (Zhang et 
al, 2000). This technique estimates the locations of 
anomalies as well as possible shapes of the anomalies 
which are indicated by the structural index.    

We developed our 3D-gravity inversion algorithm 
incorporating a numerical forward modeling and a 
conjugate gradient which provides fast rate of convergence 
without storage of any matrices. We applied our 3D-gravity 
inversion technique to synthetic data. These data include 
vertical component of gravity field the (Gz) on the ground 
surface and the spatial vertical derivative of Gz at the 
elevation of 80 m.  Our inversion results demonstrate that 
we may obtain better resolution of density distribution by 
incorporating the Euler solutions into our starting model of 
3D-gravity inversion. 
   
In order to utilize Euler deconvolution depth estimator, 
horizontal and vertical derivatives have to be either 
measured or calculated. In the case that only gradients are 
not measured, horizontal and vertical derivatives must be 
computed. The inline derivative or transverse derivative 
can be computed by either simple difference or FFT. The 
gradients obtained via FFT are dependent upon density of 
measured data, an issue we will address later.  

Theory  

The vertical component of the gravity field produced by the 

density ),,( zyx  is given by  
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where 0r

 

is the vector demoting the observation location 

and r

 

is the source location, V represents the volume of 
the anomalous mass, and 

 

is the gravitational constant. 

We utilize a Cartesian coordinate system having its origin 
on earth s surface and the z-axis pointing vertically 
upward.  The spatial vertical derivative of Gz is given as 
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For various shapes of polyhedron anomalies, the solution 
for the integrals in Eq.(1) and (2) can be found in M. Okabe 
(1979).  

Assuming that 3D-volume directly beneath the survey area 
into N rectangular cells and  

the density of i-th cell is denoted by i , Ni ,...,2,1 . 

The measure of misfit is defined as  
2

)( ddWdd , 

where )/1,,/1,/1( 21 Md diagW , i

 

is the 

standard deviation of the i-th datum.  The objective 

function m

 

is defined  to penalize discrepancies from a 

reference model and smooth in three spatial directions.   
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where the coefficients s , x , y , z determines the 

relative importance of the components and sw , xw , 
yw , 

zw are spatially dependent weighting functions, 
1

0 )()( zzzw is a depth weighting function. 

The 3D-gravity inverse problem is solved by finding a 
model T

N21
that minimizes the a 

term m

 

subject to fitting the observed data d

 

with a 

prescribed tolerance 
*
d . 

Minimize: m

 

Subject to: 
*
dd . 

The minimization is carried out using a conjugate gradient 
technique.  

Consider a simple potential source with center at 

),,( 000 zyx . For this source some total gravity field 

measurements ),,( iii zyxG are made at locations 

),,( iii zyx , Mi ,...,2,1

 
Suppose that 0g is a constant 

background field.  

It is known that  G must satisfy Euler s equation for some 
structural index N. That is,  
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, Mi ,...,2,1 . The location of anomalous source 

),,( 000 zyx can be determined by solving this linear 

equation system.   

In order to utilize Euler deconvolution depth 
estimator, horizontal and vertical derivatives have to be 
either measured or calculated. To use FFT to compute the 
vertical gradient, a gridded gravity dataset has to be 
prepared from which the vertical derivative can be obtained 
via the formula 
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where []F denote the 2 dimensional Fourier transform, 

xk and yk are the wave numbers along X-axis and Y-

axis respectively, 0z is the altitude at which the survey is 

carried out. FFT is a useful technique to compute gradients, 
especially the vertical gradients.  

Examples  

We build our synthetic model based on the description of 
salt domes in [].  In our synthetic model, the top of the salt 
mass is circular in shape and has a radius of 1000 m. The 
depth to the salt dome top is assumed to be 250 m and the 

density of salt is 2.2 3/ cmg . The density of the overlaying 

cap is assumed to be 2.60. We use a layer with thickness of 
2000m and density of  2.67 3/ cmg to represent the 

surrounding sediment.   
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Figure 1: Salt dome model. Depth from the ground surface 
to its the top is 250m   

In the first survey, we utilize 41 profiles of length 2000m 
along the NS direction separated by 50m with a data 
sampling every 50m and station elevation of 1 m from the 

ground surface. We generated zG to which 0.03 mGal 

independent Gaussian noise is added. We select the 3D-
volume to be a prism directly beneath the survey area. It 
has dimension of 2000 by 2000 m horizontally and vertical 
extent of 1000 m and its top touches the ground surface. 
We use 13500 cells of 66.6 m on each side. The inverted 
results are displayed in Figures 3-5. In this case, even 
though the data fitting is good the inverted anomaly is too 
shallow and the minimum inverted density of cell is over 

2.4 
3/ cmg and thus the contrast of the anomaly against 

the background is too low.             

 

Figure 2: Survey Geometry      

 

Figure 3: Horizontal view of inverted model at z = 0.  
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Figure 4: Cutting section of XZ-plane right through the 
center of the anomaly at y=0.  

 

Figure 5: Gz along the profile that goes over the central 
part of the anomaly. Red is synthetic data Gz plus 
0.03mGal noise. Blue is the inverted data generated with 
the initial prism whose top is at ground surface. Green is 
the inverted data generated with the initial prism whose top 
is 250 m from the ground surface.   

 

Figure 6: Euler solutions generated with data of 50m 
sampling rate. 

Figure 7: Gzz along the profile that goes over the central 
part of the anomaly. Blue is the true response. Red and 
green are obtained from Gz of density 50m by 50m via 
FFT. Red has noise while green is without noise. Brown is 
obtained from Gz of density 100m by 100m via FFT. 

We now utilize Euler deconvolution technique to 
estimate the depth of the anomaly. We added 0.03 mGal 
random noise to the true data Gz and then interpolated the 
data on a 64 by 64 grid with grid cell size of 30m by 30 m. 
We utilized FFT to compute the gradients. We display the 
vertical gradients in Figure 3. It is seen that FFT gradients 
agree reasonably well with the true gradient. The Euler 
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solutions are shown in Figure 6, demonstrating that the 
location of the anomaly is well determined.   

To demonstrate how Euler solutions are related to 
the density of measured data, we build up a courser survey 
based on the first one. In this case,  we utilize 21 profiles of 
length 2000m along the NS direction separated by 100m 
with a data sampling every 100m, doubling the inline and 
across lines distance of the first survey. Euler 
deconvolution method does not work in this case simply 
because FFT  does not generate vertical gradient Gzz 
accurately (see brown curve in Figure 7).    

Based on the Euler solutions information, we 
move the previous 3D-volume downward so that its top is 
250m from the ground surface. We subdivide the volume 
the same way as before and run the inversion again. The 
inverted results are displayed in Figures 5 and 8-9. It is 
seen that the data fitting is good;  the minimum inverted 

density of cell is over 2.09 
3/ cmg and thus the contrast 

of the anomaly against the background is in the right range.    

 

Figure 8: Horizontal view of inverted model at z = -250m. 

 

Figure 9: Cutting section of XZ-plane right through the 
center of the anomaly at y=0.  

Conclusions  

We applied our 3D-gravity inversion to synthetic ground 
data Gz and the airborne data Gzz.  Inverted models 
generated with 3D-gravity inversion only tend to be 
shallower. Euler deconvolution technique could help 
identify the correct depth of anomalies. Utilization of the 
locations of anomalies thus obtained can lead to better 
representation of the density distribution. However, Euler 
deconvolution technique may fail when the data sampling 
rate is not fine enough. Our future work will focus on how 
to run 3D-inversion more practically when this happens.     
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