An Inverse Magnetic Problem

Ruizhong Jia

In this note we describe a way to resolve an inverse magnetic problem.

1. Modeling

It is well known that an anomaly V with magnetization distribution M(r) is given by

$$A(\hat{F}) = - \iiint_{V} M(\hat{F}') \bullet \nabla \frac{1}{|\hat{F} - \hat{F}'|} d\hat{F}'$$

The scattered magnetic filed caused by the anomaly V is

Clearly,

$$\begin{aligned} \nabla \times \stackrel{\nu}{M} (\stackrel{\rho}{r'}) &= \stackrel{\nu}{0} \\ \nabla \stackrel{\nu}{M} (\stackrel{\rho}{r'}) &= \stackrel{\nu}{0} , \end{aligned}$$

since $M^{\nu}(r')$ is independent of F.

Utilizing the formulas

$$\nabla(f \bullet g) = f \times (\nabla \times g) + g \times (\nabla \times f) + (f \bullet \nabla)g + (g \bullet \nabla)f'$$
$$\nabla \times \nabla \frac{1}{|f - f'|} = 0$$

yields

$$\hat{B}_{s}(\hat{r}) = \nabla \iiint_{V} \hat{M}(\hat{r}') \bullet \nabla \frac{1}{|\hat{r} - \hat{r}'|} d\hat{r}'$$

$$= \iiint_{V} (M(r') \bullet \nabla) \nabla \frac{1}{|r-r'|} dr'$$

$$= \iiint_{V} (m_{x} \frac{\partial}{\partial x} \nabla \frac{1}{|r-r'|} + m_{y} \frac{\partial}{\partial y} \nabla \frac{1}{|r-r'|} + m_{z} \frac{\partial}{\partial z} \nabla \frac{1}{|r-r'|}) dr'$$

where
$${}_{M}^{\rho}(\vec{F}) = \begin{pmatrix} m_{x} \\ m_{y} \\ m_{z} \end{pmatrix}$$
.
Since $\nabla \frac{1}{|\vec{F} - \vec{F}'|} = -\frac{1}{|\vec{F} - \vec{F}'|^{3}} ((x - x')\vec{i} + (y - y')\vec{j} + (z - z')\vec{k}),$
 $\frac{\partial}{\partial x} \nabla \frac{1}{|\vec{F} - \vec{F}'|} = -\frac{\partial}{\partial x} \frac{1}{|\vec{F} - \vec{F}'|^{3}} ((x - x')\vec{i} + (y - y')\vec{j} + (z - z')\vec{k})$
 $= \frac{3}{2} \cdot \frac{2(x - x')}{(x - x')\vec{i}} ((x - x')\vec{i} + (y - y')\vec{j} + (z - z')\vec{k}) = \frac{1}{2} - \frac{\rho}{2}$

$$= \frac{3}{2} \cdot \frac{2(x-x')}{|P-P'|^5} ((x-x')l^2 + (y-y')j^2 + (z-z')k) - \frac{1}{|P-P'|^3}l^2$$
$$= \left(\frac{3(x-x')^2}{|P-P'|^5} - \frac{1}{|P-P'|^3}\right)l^2 + \frac{(x-x')(y-y')}{|P-P'|^5}l^2 + \frac{(x-x')(z-z')}{|P-P'|^5}k^2.$$
(1)

Similarly,

$$\frac{\partial}{\partial y} \nabla \frac{1}{|\vec{r} - \vec{r}'|} = \frac{(x - x')(y - y')}{|\vec{r} - \vec{r}'|^5} \stackrel{\rho}{\iota} + \left(\frac{3(y - y')^2}{|\vec{r} - \vec{r}'|^5} - \frac{1}{|\vec{r} - \vec{r}'|^3}\right) \stackrel{\rho}{j} + \frac{(y - y')(z - z')}{|\vec{r} - \vec{r}'|^5} \stackrel{\rho}{k}, (2)$$

$$\frac{\partial}{\partial z} \nabla \frac{1}{|\vec{r} - \vec{r}'|} = \frac{(x - x')(z - z')}{|\vec{r} - \vec{r}'|^5} \stackrel{\rho}{\iota} + \frac{(y - y')(z - z')}{|\vec{r} - \vec{r}'|^5} \stackrel{\rho}{j} + \left(\frac{3(z - z')^2}{|\vec{r} - \vec{r}'|^5} - \frac{1}{|\vec{r} - \vec{r}'|^3}\right) \stackrel{\rho}{k}. (3)$$

This formulation can be simplified by using matrix

$$B_{s}(\hat{r}) = \iiint_{V} G(\hat{r}, \hat{r}') M(\hat{r}') d\hat{r}',$$

where $G(\vec{r}, \vec{r}')$ is Green's tensor, a symmetric matrix $G = (g_{ij})_{3\times 3}$ with

$$g_{11} = \frac{3(x-x')^2}{|\vec{r}-\vec{r}'|^5} - \frac{1}{|\vec{r}-\vec{r}'|^3}$$
$$g_{12} = \frac{3(x-x')(y-y')}{|\vec{r}-\vec{r}'|^5}$$
$$g_{13} = \frac{3(x-x')(z-z')}{|\vec{r}-\vec{r}'|^5}$$

$$g_{21} = \frac{3(x - x')(y - y')}{|r - r'|^5}$$

$$g_{22} = \frac{3(y - y')^2}{|r - r'|^5} - \frac{1}{|r - r'|^3}$$

$$g_{23} = \frac{3(y - y')(z - z')}{|r - r'|^5}$$

$$g_{31} = \frac{3(x - x')(z - z')}{|r - r'|^5}$$

$$g_{32} = \frac{3(y - y')(z - z')}{|r - r'|^5}$$

$$g_{33} = \frac{3(z - z')^2}{|r - r'|^5} - \frac{1}{|r - r'|^3},$$

$$\rho = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad \rho' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}.$$

Therefore the total field is

$$\overset{\rho}{B}(\overset{\rho}{r}) = \overset{\rho}{B}_{e} + \overset{\rho}{B}_{s}(\overset{\rho}{r}) = \overset{\rho}{B}_{e} + \iiint_{V} G(\overset{\rho}{r}, \overset{\rho}{r}') \overset{\rho}{M}(\overset{\rho}{r}') d\overset{\rho}{r}',$$

where $B_{e}(r)$ represents the earth's magnetic field.

We now break the anomaly into M cells and assume that there exists exactly one cell having magnetization. The task is to identify the location of this particular cell, cell j say, and compute its magnetization (amplitude as well as direction) as well. The information we have is the measured total magnetic field:

$$\begin{array}{c} \begin{array}{c} \rho & \rho \\ B(r_1) \end{array} \right|_{,} \left| \begin{array}{c} \rho \\ B(r_2) \end{array} \right|_{, \dots, } \left| \begin{array}{c} \rho \\ B(r_N) \end{array} \right|$$

The problem can be formulated as

$$\begin{vmatrix} \rho \\ B(r_i) \end{vmatrix} = \begin{vmatrix} \rho \\ B_e + G(r_i, r_j) M_j \Delta V_j \end{vmatrix}, \ i = 1, 2, ..., N_i$$

where M_{j}^{μ} stands for the magnetization of cell *j*, and r_{j}^{μ} specifies the coordinates of the center of cell *j*.

We introduce the notation

$$\begin{split} \boldsymbol{\beta} & \boldsymbol{\rho} \\ \boldsymbol{B} & (\boldsymbol{r}_i) = \begin{pmatrix} \boldsymbol{b}_1^i \\ \boldsymbol{b}_2^i \\ \boldsymbol{b}_3^i \end{pmatrix} \\ \boldsymbol{\beta} & \boldsymbol{\beta} \\ \boldsymbol{B}_e = \begin{pmatrix} \boldsymbol{b}_1^e \\ \boldsymbol{b}_2^e \\ \boldsymbol{b}_2^e \\ \boldsymbol{b}_3^e \end{pmatrix} \\ \boldsymbol{M}_j & = \begin{pmatrix} \boldsymbol{m}_1 \\ \boldsymbol{m}_2 \\ \boldsymbol{m}_3 \end{pmatrix} \end{split}$$

 $G(P_i, P_j) \Delta V_j = (a_{kl})_{3 \times 3}.$ Note that our aim is to determine the vector $M_j = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}.$

Using the above notation, we have N equations, each having the form

$$m_{1}^{2} \sum_{i=1}^{3} a_{i1}^{2} + m_{2}^{2} \sum_{i=1}^{3} a_{i2}^{2} + m_{3}^{2} \sum_{i=1}^{3} a_{i3}^{2} + 2m_{1}m_{2} \sum_{i=1}^{3} a_{i1}a_{i2} + 2m_{1}m_{3} \sum_{i=1}^{3} a_{i1}a_{i3} + 2m_{21}m_{3} \sum_{i=1}^{3} a_{i2}a_{i3} + 2m_{1}m_{2} \sum_{i=1}^{3} a_{i1}a_{i2} + 2m_{1}m_{3} \sum_{i=1}^{3} a_{i1}a_{i3} + 2m_{21}m_{3} \sum_{i=1}^{3} a_{i2}a_{i3} + 2m_{1}m_{2} \sum_{i=1}^{3} a_{i1}a_{i2} + 2m_{1}m_{3} \sum_{i=1}^{3} a_{i1}a_{i3} + 2m_{2}m_{3} \sum_{i=1}^{3} a_{i2}a_{i3} + 2m_{1}m_{2} \sum_{i=1}^{3} a_{i1}a_{i2} + 2m_{1}m_{3} \sum_{i=1}^{3} a_{i1}a_{i3} + 2m_{2}m_{3} \sum_{i=1}^{3} a_{i2}a_{i3} + 2m_{1}m_{2} \sum_{i=1}^{3} a_{i1}a_{i3} + 2m_{2}m_{3} \sum_{i=1}^{3} a_{i2}a_{i3} + 2m_{1}m_{2} \sum_{i=1}^{3} a_{i1}a_{i3} + 2m_{2}m_{3} \sum_{i=1}^{3} a_{i2}a_{i3} + 2m_{1}m_{2} \sum_{i=1}^{3} a_{i1}a_{i3} + 2m_{2}m_{3} \sum_{i=1}^{3} a_{i2}a_{i3} + 2m_{2}m_{3} \sum_{i=1}^{3} a_{i3}a_{i3} + 2m_{2}m_{3} \sum_{i=1}^{3} a_$$

Solving this equation system for m_1, m_2, m_3 (by means of the least squares) gives the desired results.

Based on the testing we conducted, the magnitude of the desired magnetization vector as well as its direction can be localized accurately if the volume of the body is presumably known. However, if we don't know exactly what the volume is, the results are less accurate. To resolve this issue, we would take the information about derivatives of Btotal into consideration. To this end, the following computation is carried out. It follows from (1) that

$$\begin{split} \frac{\partial^2}{\partial x^2} \nabla \frac{1}{|\vec{F} - \vec{F'}|} &= \frac{\partial}{\partial x} \Biggl[\Biggl(\frac{3(x - x')^2}{|\vec{F} - \vec{F'}|^5} - \frac{1}{|\vec{F} - \vec{F'}|^3} \Biggr)_{\vec{F}}^{\vec{P}} + \frac{(x - x')(y - y')}{|\vec{F} - \vec{F'}|^5} \underbrace{_{\vec{F}}^{\vec{P}} + \frac{(x - x')(z - z')}{|\vec{F} - \vec{F'}|^5} }_{\vec{F}} \Biggr] \\ &= \Biggl(-\frac{5}{2} \cdot \frac{3(x - x')^2 \cdot 2(x - x')}{|\vec{F} - \vec{F'}|^7} + \frac{6(x - x')}{|\vec{F} - \vec{F'}|^5} + \frac{3 \cdot 2(x - x')}{2|\vec{F} - \vec{F'}|^5} \Biggr)_{\vec{F}}^{\vec{P}} + \Biggl(-\frac{5}{2} \cdot \frac{(x - x')(y - y')2(x - x')}{|\vec{F} - \vec{F'}|^7} + \frac{(y - y')}{|\vec{F} - \vec{F'}|^5} \Biggr)_{\vec{F}}^{\vec{P}} \\ &+ \Biggl(-\frac{5}{2} \cdot \frac{(x - x')(z - z')2(x - x')}{|\vec{F} - \vec{F'}|^7} + \frac{(z - z')}{|\vec{F} - \vec{F'}|^5} \Biggr)_{\vec{F}}^{\vec{P}} \end{aligned}$$

$$\begin{split} \frac{\partial}{\partial x \partial y} \nabla \frac{1}{|P-P'|} &= \frac{\partial}{\partial y} \left[\left(\frac{3(x-x')^2}{|P-P'|^5} - \frac{1}{|P-P'|^3} \right)_{l}^{\rho} + \frac{(x-x')(y-y')}{|P-P'|^5} \frac{\rho}{j} + \frac{(x-x')(z-z')}{|P-P'|^5} \frac{\rho}{k} \right] \\ &= \left(-\frac{5}{2} \cdot \frac{3(x-x')^2 \cdot 2(y-y')}{|P-P'|^7} + \frac{3 \cdot 2(y-y')}{2|P-P'|^5} \right)_{l}^{\rho} + \left(-\frac{5}{2} \cdot \frac{(x-x')(y-y') \cdot 2(y-y')}{|P-P'|^7} + \frac{x-x'}{|P-P'|^5} \right)_{l}^{\rho} \right] \\ &+ \left(-\frac{5}{2} \cdot \frac{(x-x')(z-z') \cdot 2(z-z')}{|P-P'|^7} \right)_{l}^{\rho} k \\ &= \left(-\frac{5}{2} \cdot \frac{3(x-x')^2 \cdot 2(y-y')}{|P-P'|^7} - \frac{3 \cdot 2(y-y')}{2|P-P'|^5} \right)_{l}^{\rho} + \left(-\frac{5}{2} \cdot \frac{(x-x')(y-y') \cdot 2(y-y')}{|P-P'|^7} + \frac{x-x'}{|P-P'|^5} \right)_{l}^{\rho} \right] \\ &+ \left(-\frac{5}{2} \cdot \frac{(x-x')(z-z') \cdot 2(z-z')}{|P-P'|^7} \right)_{l}^{\rho} k \end{split}$$

2. Testing

The testing executable is located at Petros-12\E:\users\rjia\inverse_mag\release The first Test: remanent body

Model Properties	
Dimensions	Center/Top
Strike Length 1	North 0
Thickness 1	Up -5.5
Dip Extent 1	East 0
Material Properties	C Top Center
Conductivity 0.01	Geological Angles
Susceptibility 0	N Strike 0
Permittivity 1	— 13 Dip 90
Resistivity 100	Plunge 0
Apply Color	Number Of Sample Pts
Undo Close	Name PRISM1

Profile # Num. Loc. Total number of profiles 7 1 LINE3 7 3 LINE3 7 4 LINE4 7 5 LINE6 7 7 LINE7 7 8 LINE6 7 7 LINE7 7 1 1.500000e+001 1.500000e+001 1 1.500000e+001 1.500000e+001 1 1.500000e+001 1.500000e+001 1 1.000000e+001 1.500000e+001 1 1.000000e+001 1.500000e+001 1 1.000000e+001 1.00000e+000 3 1.500000e+001 1.00000e+000 4 1.000000e+001 1.00000e+000 5 1.500000e+001 1.00000e+000 5 1.500000e+001 1.000000e+000 6 1 1.00000e+001 1.00000e+000 7 1 1.500000e+001 1.000000e+000 7 1 1.500000e+001 1.000000e+000 7 1 1.500000e+001 1.000000e+000	Profil(5) Waveform Tx-Rx Prisms/	/Plates/Polyhedra Layers Output	EMSphere	
1 LINE1 7 2 LINE2 7 3 LINE3 7 4 LINE4 7 5 LINE6 7 7 LINE7 7 1 1 Station # 7 LINE1 Station # 7 1 -1.500000e+001 -1.500000e+001 1 -1.500000e+001 1.00000e+000 -1.500000e+001 3 1 -5.000000e+000 1.00000e+000 3 1 -5.000000e+001 1.00000e+000 3 1 5.00000e+001 1.00000e+000 5 1 5.00000e+001 1.00000e+000 5 1 5.00000e+001 1.00000e+000 6 1 1.00000e+001 1.00000e+000 7 1 1.500000e+001 1.00000e+000 7 1 1.500000e+001 1.000000e+000 </td <td>Profile # Num. Loc.</td> <td>Total number</td> <td>Modily Fiblie</td> <td>Import Profile</td>	Profile # Num. Loc.	Total number	Modily Fiblie	Import Profile
3 LINE3 7 4 LINE4 7 5 LINE6 7 7 LINE6 7 7 LINE7 7 1 -1.500000e+001 -1.500000e+001 1 -1.500000e+001 -1.500000e+001 1 -1.500000e+001 -1.500000e+001 3 1 -5.000000e+001 3 1 -5.000000e+001 3 1 -5.000000e+001 3 1 5.000000e+001 3 1 5.000000e+001 4 1.000000e+001 1.000000e+000 5 1 5.000000e+001 5 1 5.000000e+001 6 1 1.000000e+001 7 1 1.500000e+001 7 1 1.500000e+001 1 1.000000e+001 1 1.000000e+000 5 1.500000e+001 1 1.000000e+000 7 1 1.500000e+001 1 1.000000e+000 1 1.00000e+001 <td>1 LINE1 7 2 LINE2 7</td> <td>of profiles</td> <td>Delete Every 2 Apply</td> <td></td>	1 LINE1 7 2 LINE2 7	of profiles	Delete Every 2 Apply	
4 LINE4 7 5 LINE5 7 6 LINE6 7 7 LINE7 7 1 1 1.500000e+001 1 1.500000e+001 1.500000e+001 3 1 5.00000e+001 3 1 5.00000e+001 4 1.00000e+001 1.00000e+000 5 1 5.00000e+001 6 1 1.00000e+001 7 1 1.500000e+001 1 1.00000e+001 1 1.00	3 LINE3 7	of stations		Profiles On Topography
§ LINE6 ? 7 LINE7 ? Reorder Profiles Station # Station Profile # 1 1.500000e+001 2 1 1 1.500000e+001 3 1.500000e+001 3 1.500000e+001 4 0.00000e+001 5 1.500000e+001 5 1.500000e+001 6 1.00000e+001 7 1.500000e+001 1.500000e+001 1.500000e+000 6 1.000000e+001 7 1.500000e+001 1.500000e+001 1.500000e+000 6 1.00000e+001 7 1.500000e+001 1.500000e+001 1.500000e+000 7 1.500000e+001 1.500000e+001 1.500000e+000 1.500000e+001 1.500000e+000 1.500000e+001 1.500000e+000 1.500000e+001 1.500000e+000 1.500000e+001 1.500000e+000 1.500000e+001 1.500000e+000 1.500000e+001 1.5000000e+000 1.500000e+001	4 LINE4 7 5 LINE5 7	Profile 1	Shift Z 🔻 0 Apply	
Interf Profile Name Lint 1 Reorder Profiles Station # 7 Station Profile # X Y 1 -1.500000e+001 -1.500000e+001 1.00000e+000 2 1 -1.500000e+001 1.00000e+000 3 1 -5.500000e+001 1.00000e+000 4 0 0.00000e+000 1.500000e+001 5 1 5.00000e+001 1.00000e+000 6 1 1.00000e+001 1.00000e+000 7 1 1.500000e+001 1.000000e+000 7 1 1.500000e+001 1.000000e+000 7 1 1.500000e+001 1.000000e+000 7 1 1.500000e+001 1.000000e+000 6 1 1.00000e+001 1.000000e+000 7 1 1.500000e+001 1.000000e+000 6 1 1.00000e+001 1.000000e+000 7 1 1.500000e+001 1.000000e+000 8 First Station Last Station New Profile X 15 Y <t< td=""><td>6 LINE6 7</td><td>Destin News UNE1</td><td>C All Profiles C Current Profile</td><td>Retrieve/Restore Data</td></t<>	6 LINE6 7	Destin News UNE1	C All Profiles C Current Profile	Retrieve/Restore Data
Reorder Profiles Station # [7] Station Profile # X Y Z 1 1 1.500000e+001 1.500000e+001 1.00000e+000 2 1 -1.500000e+001 1.500000e+001 1.00000e+000 3 1 -5.000000e+001 1.500000e+001 1.00000e+000 4 1 0.00000e+000 1.500000e+001 1.000000e+000 5 1 5.00000e+001 1.500000e+001 1.000000e+000 6 1 1.000000e+001 1.000000e+000 Change LINE1 Apply 7 1 1.500000e+001 1.000000e+000 1.000000e+000 Replace © Insert 7 1 1.500000e+001 1.000000e+000 Replace Insert 6 1 1.00000e+001 1.000000e+000 Replace New Profile 7 1 1.500000e+001 1.000000e+000 Replace New Profile 8 15 Y 15 Y 15 Replace Profile 1 Y 15 Y 15 Y 15 </td <td></td> <td></td> <td></td> <td>- Add Single Station</td>				- Add Single Station
Station Profile # X Y Z 1 1 1.500000e+001 1.500000e+001 1.00000e+000 2 1 1.000000e+001 1.500000e+001 1.00000e+000 3 1 5.000000e+001 1.500000e+001 1.00000e+000 4 1 0.00000e+001 1.500000e+001 1.00000e+000 5 1 5.000000e+001 1.500000e+001 1.00000e+000 6 1 1.00000e+001 1.500000e+001 1.00000e+000 7 1 1.500000e+001 1.000000e+000 1.000000e+000 7 1 1.500000e+001 1.000000e+000 1.000000e+000 6 1 1.00000e+001 1.000000e+000 1.00000e+000 7 1 1.500000e+001 1.000000e+000 1.00000e+000 7 1 1.500000e+001 1.000000e+000 1.000000e+000 7 1 1.500000e+001 1.000000e+000 1.000000e+000 7 1 1.500000e+001 1.000000e+000 1.000000e+000 8 Piritis Station Last Station New Profile	Reorder Profiles	Station # 7	Leis Dusfles	× 15
1 1 1.500000e+001 1.500000e+001 1.00000e+000 2 1 1.000000e+001 1.500000e+001 1.00000e+000 3 1 5.00000e+001 1.500000e+001 1.00000e+000 4 1 0.00000e+001 1.500000e+001 1.00000e+000 5 1 5.00000e+001 1.500000e+001 1.00000e+000 7 1 1.500000e+001 1.500000e+000 1.00000e+000 7 1 1.500000e+001 1.00000e+000 0 7 1 1.500000e+001 1.00000e+000 0 8 6 First Station Last Station New Profile 8 15 Y -15 Y -15 9 -15 Z 1 Unit Unit	Station Profile # X	Y Z		
2 1 -1.000000e+001 1.000000e+000 3 1 -5.00000e+001 1.00000e+000 4 1 0.00000e+000 -1.500000e+001 5 1 5.00000e+001 1.00000e+000 6 1 1.00000e+001 1.00000e+000 7 1 1.500000e+001 1.00000e+000 7 1 1.500000e+001 1.00000e+000 7 1 1.500000e+001 1.00000e+000 7 1 1.500000e+001 1.00000e+000 6 1 0.00000e+001 1.00000e+000 7 1 1.500000e+001 1.00000e+000 7 1 1.500000e+001 1.00000e+000 6 First Station Last Station New Profile 8 15 Y -15 Y 9 -15 Z 1 Unit	1 1 -1.500000e+001	-1.500000e+001 1.000000e+000		Y -15
4 1 0.000000e+000 -1.500000e+001 1.000000e+000 5 1 5.000000e+001 -1.500000e+001 1.00000e+000 6 1 1.000000e+001 -1.500000e+001 0.00000e+000 7 1 1.500000e+001 -1.500000e+000 0.0000e+000 7 1 1.500000e+001 1.00000e+000 0.0000e+000 6 1 1.500000e+001 1.00000e+000 0.0000e+000 7 1 1.500000e+001 1.00000e+000 0.0000e+000 7 1 1.500000e+001 1.000000e+000 0.0000e+000 7 1 1.500000e+001 1.00000e+000 0.0000e+000 6 E E E E 6 E E E E 7 1 1.500000e+001 1.000000e+000 E E 6 E E E E E E 8 2 1 E E E E 9 1.5 2 1 E E E	2 1 -1.000000e+001 3 1 -5.000000e+000	-1.500000e+001 1.000000e+000 -1.500000e+001 1.000000e+000	Before Selected Station Apply	Z 1
3 1 1.000000+001 -1.500000+001 1.000000+000 7 1 1.500000+001 1.000000+000 C 7 1 1.500000+001 1.000000+000 6 Generate Stations with Constant Step First Station Last Station × -15 Y -15 Y -15 Z 1 Unit	4 1 0.000000e+000 ·	-1.500000e+001 1.000000e+000	Change LINE1 Apply	< Add to the Profile
7 1 1.500000e+001 1.00000e+001 1.00000e+001 First Station Last Station New Profile × 15 Y 15 Y 15 Y 15 Z 1 Z 1	6 1 1.000000e+001	-1.500000e+001 1.000000e+000	Name	C Replace Insert
First Station Last Station × 15 Y -15 Z 1	7 1 1.500000e+001 -	-1.500000e+001 1.000000e+000	Generate Stations with Constant Step	
× -15 × 15 Y -15 Y -15 Z 1 Z 1			First Station Last Station	New Profile
Y -15 Replace Profile Z 1 Z 1			× -15 × 15	
			× 15	Beplace Profile
		<u> </u>		
		Channel		O Feet
Linanners Station Increment S Num. of Stations 7 Creet	Hesponses	Lhanneis	Station Increment 5 Num. of Station	

Profiles information

The testing results

Delta Y 0.5 Output File My 25610.84917573 Delta Z 0.5 E:\Users\rija\testing\jia.txt Browse Mz -40196.12257313	Gridding Information XStart -2 XEnd 2 YMin -2 YMax 2 ZMin -10 ZMax 0 DeltaX 0.5	Earth Field System (Background) Inclination (degrees) 75 Declination (degrees) 20 Intensity (nT) 52500 Input File E:\Users\rjia\testing\after.xyz Browse	Simulated Results Source Cell Coordinates X -0.25 Y -0.25 Z -5.75 Source Magnetization Mx 25961.402031836
	Delta Y 0.5 Delta Z 0.5	E:\Users\rjia\testing\after.xyz Browse Output File E:\Users\rjia\testing\jia.txt Browse	My 25610.84917573 Mz -40196.12257313

Note in the output,
$$\begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} = \stackrel{\rho}{M}_j \Delta V_j = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} \Delta V_j.$$

In the output file (jia.txt as specified in the above), the first three numbers in each row indicate the coordinates of the center of a cell, followed by error

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \left\| \hat{B}(\hat{r}_{i}) \right\| - \left| \hat{B}_{e} + G(\hat{r}_{i}, \hat{r}_{j}) \hat{M}_{j} \Delta V_{j} \right\|$$

and deviation.

The second Test: (prism not remanent)

Model Properties	
Dimensions	Center/Top
Strike Length	North 0
Thickness 0.5	Up -6.5
Dip Extent 0.5	East 0
Material Properties	O Top 💿 Center
Conductivity 0.01	Geological Angles
Susceptibility 5	Strike 0
Permittivity 1	Dip 90
Resistivity 100	Plunge 90
Apply Color	Number Of Sample Pts
Undo Close	Name Prism1

Profiles Information