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Abstract 
 

The development of rapid O(N)  numerical techniques, initiated by the pioneering of the Localized Non-
Linear (LN) Approximator in 1993 (Habashy, Groom and Spies [1]), has offered many possibili ties for the 
simulation of realistic electromagnetic situations for a wide range of applications. At the beginning, very rapid 
calculation times combined with minimal memory requirements offered the potential to simulate more complex 
and thus more geologically meaningful models. This continues today. However, new possibili ties and capabili ties 
continue to evolve.  We have experimented with many developments in LN techniques (Murray et al [4]), 
including extensions to inductive modes, multi-body problems, time-varying and static magnetic effects and 
polyhedral primitives. Although the technique was initially developed for hydrocarbon reservoir characterization 
and later for mineral exploration, the techniques are proving useful for near-surface environmental and 
geotechnichal applications. 
 

Our general formulation provides extensions of the technique to simulation problems of specific interest 
for near-surface EM. In particular, induction effects due to contrasts solely in induced magnetization and the 
combined response due to contrasts in resistivity and magnetization. The use of our original techniques as well 
as research into new extensions as they pertain to near-surface applications will be discussed. 
 

Introduction  
 

To simulate three-dimensional electromagnetic scattering in the earth, either differential or integral 
equation techniques are used.  In terms of the large and often il l-conditioned matrices that must be  generated 
and solved, the difficulties arising in standard approaches are well known. This was the impetus behind the initial 
development of the Localized Non-Linear (LN) Approximator (Habashy, Groom and Spies [1]). 

 
While the early developments of the LN technique indicated the tremendous potential of the method, the 

original formulation provided only what is sometimes called the current channelli ng or galvanic response. By 
deriving the magnetic field from the internal electric currents, inductive responses were poorly estimated 
(Murray [2]). This limitation is, however, common to most electric field formulations. 
 

The early LN technique provided excellent representations of full wave internal field scattering for 
secondary galvanic responses in the case of a single spherical scatterer.  The algorithm was later extended to 
right rectangular prisms of arbitrary aspect ratio (Groom, Walker and Dyck [3]) thus providing the building 
blocks for more realistic and complex models.  To fully implement the LN algorithm, techniques were required 
to handle multi-body interactions.  Then, for a wider range of models to be tractable, a more amorphous type of 
scattering primitive was required (a non-convex polyhedron) and the inabili ty of the technique to model 
inductive responses had to be addressed. 
   

In many environmental applications of EM, conductivity is not always the only factor governing the 
response of anomalous bodies.  Although, the original LN technique considered variations in conductivity and 
electrical permittivity, magnetic (susceptibili ty) variations can also play a role. Algorithms, which can tolerate 
simultaneous variations in all electrical properties, are extremely important for many geophysical applications of 
electromagnetics and extensions of the LN are possible for these problems. 



 2 

 
Electromagnetic Response Modes and Extensions of Non-L inear Approximator  
 

Extension to Stronger Inductive Modes 
 
We first begin with the integral representation of the electric field both internal and external to the scatterer 

The  LN Approximator estimates the internal field inside regions of anomalous conductivity by assuming that  

at a given observation point, only the local value of the field is important, and this value (which is unknown) is 
extrapolated across the target.  Of course, the LN technique is accurate only when the local gradients (and 
higher order derivatives of the internal field) are truly insignificant.  Certainly, for a strong inductive coupling of 
source and scatterer, the effects of the field gradients are of importance, and in such cases the LN approximation 
will be inadequate. That is, for any internal point, r , 
Where, Q, is the complex conductivity: 
 
 
 
Thus allowing the representation of the internal field by an analytic scattering operator 

The scattering operator, Γ, is dependent on the geometry of the scatterer, the position of the internal point and 
the complex frequency. Thus, it derivation sometimes requires some mathematical effort but thereafter is 
computed relatively free and provides in some instances some considerable improvements in accuracy. It also 
allows for the calculation of the magnetic field directly by integrating over the appropriate Greens’ tensor times 
the internal electric field determined by Eq. (2). In this section, we assume that the magnetic permeabili ty µ  is 
constant throughout the medium and take the curl of Eq(2) and use Eq(1) to obtain  

When induction is significant, the gradients in the internal electric field cannot be neglected when performing the 
integral in Eq (1) to determine the internal electric field. To estimate the effect of the internal gradients, we 
proceed as follows. If the contrast Q(r)  is uniform over the scatterer, then formally taking spatial derivatives of 
Eq(4) yields, in a shorthand notation 

where the gradient operator ]z/,y/,x/[1, =] [1, = ∂∂∂∂∂∂∇∇∗ .  By Taylor expansion, Eq (4)  can be written as 
a set of equations in the form 
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V i  and F i  are three-space vectors and T ij  are 3x3 matrices. Hence, Eqs.(5) constitutes a 12x12 linear system 

in the unknowns  V i ,  i = 1,2,3,4. The tensorial expressionsT ij   are functions of the geometrical and electrical 

properties of the scatterer, and of r  and ω .  They are semi-analytic in nature, expressible as a combination of 
analytical and numerical quadratures. This extension, we term the ILN approximation. 
 
Extension to Multiple Targets: 
 
A single scatterer is often insufficient to represent realistic earth situations and in such cases, the superposition 
of responses is only valid for multiple targets which are sufficiently spatially separated. When utili zing multiple 
targets in conventional techniques, one can often observe that interactions between anomalies are non-physical. 
 
For multiple targets (not in contact), the effect of interaction (to first order) can be calculated as follows. 
Consider a model of two structures in some proximity, and imagine a receiver at a location internal to the first 
anomaly. The receiver is energized with the host field (the field in the absence of both scatterers) plus a first 
order backscatter from the second structure and vice versa. This analysis is first-order; in reality the interaction 
series is infinite. However, evaluating more than the primary backscattering contribution is computationally 
expensive and often unnecessary. In particular, a converged series is necessary when the targets are in close 
proximity (and it is in this case where many numerical techniques often fail) but the LN algorithms already have 
a unique sense for this interaction: current is obliged by the technique to flow between the structures. 
  
To put these concepts on a firmer foundation, consider calculating the scattered field for a collection of  n 
conductivity anomalies and for the sake of argument,  multiple LN prism scatterers each with uniform electrical 
properties.  Treated separately, the LN approximation [1] says that the internal field inside prism i  is  

For the collection of prisms, it is consistent with the LN approximation that for a point inside the aggregate 
structure the internal field is given by 

The scattered electric field is then represented as 
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When targets are in close proximity, it is more persuasive physically  to replace  Q(i)  with Q(j)  inside the integral 
 in  Eq.(6). This would then give the secondary field as 
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This multiple scattering technique is termed Near Field interactions, and represents continuous current flow 
between scatterers. Although an approximation, it has proven effective in representing data in these situations. 
 
 
 

There are other ways to incorporate multiple scattering. For instance, the field interior to the ith  object can be 
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approximated via 
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giving the expression for the scattered field under single scattering, which we term Far Field interactions:  
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Note that without the internal summation in Eq.(8) the result is simply the superposed scattered field, that is to 
say 
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is the response of the combined targets in Superposition. 

 
Extension to Magnetic Effects 
 
In Maxwell ’s  equations, when we allow a contrast in permeabili ty, we cannot (profitably) take the curl of 
Ampere’s Law as in the Inductive Modes section.  If the scatterer is only magnetic or only permeabili ty 
contrasts play a role, as in static (DC) magnetics, we can by analogy take the curl of Faraday’s and Ampere’s 
law in an equivalent procedure. For variations in conductivity, permittivity and permeabili ty, we require a new 
approach, namely we write the basic equations as 
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We now decompose the fields as 
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so that H 0  and E0  have the familiar solutions 
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Eqs.(16), (17) are not yet suitable solutions for H 0  and E0 , since there is still a dependence on the unknown 

quantities ∗H  and ∗E .  We derive similar solutions for these fields, as 
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To proceed, we assume that the LN approach [1] is valid for the response (inductive modes are an extension).  
In this context, Eqs.(16,(17) are approximated by 
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The physical field approximations are then obtained by summing Eqs.(20) and (21), yielding 
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In terms of the LN scattering tensors 

 
we can rewrite Eqs.(22) and (23) as 
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Note that in the DC magnetic case, there is no background electric field and the solution reduces to the static 
magnetic case suitable for simulating the response due to the earth’s field. 
 
Extensions to Polyhedra 
 
The LN theory (and its extensions to inductive modes, multi-body problems and permeabili ty effects) is 
independent of scatterer or primitive geometry.  It is only in the implementation where the geometry of the 

scatterer plays a significant role, particularly, in the evaluation of the scattering tensors (T ij  operators which 

include the  Γ tensor). This is mathematically non-trivial for even the simplest primitive geometries. Our present 
developments allow the specification of a (generally non-convex) polyhedral anomaly. This is solved through a 
specialized triangle based polygon primitive which allows for a stable and rapid solution of even extremely 
complicated polygonal shapes. 
 
 

Examples: 
 
Resistivity and Induced Polarization: 
 

As a first example, to show some basic but non-trivial capabili ties, we draw upon a modeling exercise 
from municipal water pumping considerations.  This example was specific to Southern Ontario but is easily 
adaptable to a more general aquifer geometry.   
 

Over this area, there exists an aquifer at about 100m with a thickness of a few tens of meters underlain 
by a more resistive basement. This aquifer is used extensively for municipal water supplies  for small towns and 
modest sized cities. Although the thickness of the aquifer is generally known, the aquifer contains non-
permeable clay lenses. The distribution and quantity of these lenses could affect significantly the predicted safe 
pumping rate for the aquifer.  
 

Figure 1 indicates the model. The survey is a 50m dipole-dipole array carried out at 7 frequencies 
between  0.1 and 100 Hz and over 4 survey lines (green)  separated by 100m. There are four separate 
geometries for the lenses in the model. All 4 lenses have the same conductivity ( 1 S/m). All targets have the 
same chargeabili ty and decay constant except the longest target which is non-polarizable.  The red and purple 
targets are flat at 140m while the red target is at 105m. The blue target is dipping so that its bottom is at 140m. 
The original galvanic LN approximation extended to IP is utili zing for this modeling example. 
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Figure 1: Aquifer model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The question we asked is whether the resistivity, alone, can distinguish the objects and if the targets’ 

characteristics  are distinguishable.  
 

The model is easy to define and defining a reasonable sample grid is trivial. As can be seen from Figure 
2, which shows the Resistivity for the N=6 separation, the resistivity response does show all 4 targets, but the 
variations are  too small to distinguish any structure in a realistic survey. At a separation of 300m, there is 
sufficient response variation but the objects are blurred together. The IP response (shown as phase angle) is 
more distinguishing (Fig. 3). However, the model exercise indicates that the short  dipole separations and low 
frequencies give the primary differentiation. However, not until N=4 and at relatively high frequencies ( i.e. 
100Hz) is there sufficient phase variation to be realistically measurable in the noise. However, for these settings, 
the objects are again less distinguishable in the synthetic data.  

The Induced Polarization-Resistivity model takes less than 5minutes on a standard Pentium II or III .  It 
is, in summary, very simple and quick to define fully 3D Resistivity-IP targets and study response variation due 
to size, electric parameters and orientation. 
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Figure 3:  Induced Polar ization Response : N=4, f=100Hz 

Figure 2: Resistivity Response, N=6 
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Clay Wedge – FEM Example: 
 
For this exercise, we consider the response variations due to a clay wedge. For this example, we utilize both the 
polyhedra extensions and the extensions to higher order inductive terms (ILN). The model of the wedge is 
shown is Figure 4 (orange-red) with a rectangle (blue) for comparison.  The host is represented as a thin 
resistive layer underlain by a 400 Ohm-m basement. The wedge is buried at 5m and is 100m by 50m thinning 
from 15m in thickness to the East. The wedge is given a Resistivity of 50Ohm-m. The block has the same 
characteristics except that it has a constant thickness of 15m.   
 

 
 

 

Figure 4: Clay Wedge M odel 

Figure 5: Clay Wedge vs Block    EM 31 Response 
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We examine the response to an EM31 system and show the comparison in Figure 5 where the wedge response 
is shown in Red and block in blue. We see an expected reduction in response as we move west but it is 
interesting that the short EM31 separation (3.66m) and the relatively high frequency ( 9800 Hz) shows 
significant differences in the response. All this indicates the necessity even with simple examples of the need to 
represent the true target geometry and proper simulation of inductive responses.  Again, the simulation time is 
extremely rapid requiring only about 10 seconds on a 0.8GHz PIII computer. 
 

Conclusions 
 
We have summarized various developments in rapid EM and magnetics modeling. As well, we have given only 
two examples of how this simulation capabili ty can be utili zed for near-surface applications.  The simulations 
require only very standard computers and compute models accurately and rapidly in very short times. We 
believe that in the future these techniques will have increasing use in the environmental and geotechnical fields. 
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