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Abstract

The development of rapid O(N) numericd techniques, initiated by the pioneeing o the Locdized Non-

Linea (LN) Approximator in 1993 (Habashy, Groom and Spies [1]), has offered many possbilities for the
simulation of redistic dedromagnetic situations for awide range of applicaions. At the beginning, very rapid
cdculation times combined with minimal memory requirements offered the potential to smulate more cmplex
and thus more geologicaly meaningful models. This continuestoday. However, new possbili tiesand capabili ties
continue to evolve. We have experimented with many developments in LN techniques (Murray et a [4]),
including extensions to inductive modes, multi-body problems, time-varying and static magnetic feds and
polyhedral primitives. Although the tedhnique wasinitially developed for hydrocarbon reservoir charaderizaion
and later for mineral exploration, the techniques are proving useful for nea-surface @vironmental and
geotedhnichal applications.

Our general formulation provides extensions of the technique to smulation problems of spedficinterest
for nea-surfaceEM. In particular, induction effeds due to contrasts lely in induced magnetizaion and the
combined response due to contrastsin resistivity and magnetization. The use of our original techniques aswell
asreseach into new extensions as they pertain to nea-surface gplications will be discussed.

I ntroduction

To smulate threedimensiona eledromagnetic scattering in the eath, either differential or integra
equation techniques are used. Interms of the large and often ill-conditioned matrices that must be generated
and solved, thedifficultiesarising in standard approadhes are well known. Thiswastheimpetus behind theinitia
development of the Locdized Non-Linea (LN) Approximator (Habashy, Groom and Spies[1]).

Whilethe ealy developments of the LN tedhnique indicaed the tremendous potential of the method, the
original formulation provided only what is smetimes cdled the aurrent channelling or galvanic response. By
deriving the magnetic field from the internal eledric aurrents, inductive responses were poorly estimated
(Murray [2]). Thislimitation is, however, common to most eledric field formulations.

The ealy LN technique provided excdlent representations of full wave internal field scatering for
secondary galvanic responses in the cae of a single spherica scéaterer. The dgorithm was later extended to
right redangular prisms of arbitrary asped ratio (Groom, Walker and Dyck [3]) thus providing the building
blocks for more redistic and complex models. To fully implement the LN algorithm, techniqueswererequired
to handle multi-body interadions. Then, for awider range of modelsto betradable, amore anorphoustype of
scatering primitive was required (a non-convex polyhedron) and the inability of the tedhnique to model
inductive responses had to be aldressd.

In many environmental applications of EM, conductivity is not always the only fador governing the
response of anomalous bodies. Although, the original LN tedhnique considered variationsin conductivity and
eledricd permittivity, magnetic (susceptibility) variations can also play arole. Algorithms, which cantolerate
simultaneous variationsin al eledricd properties, are extremely important for many geophysicd applicaionsof
eledromagnetics and extensions of the LN are possble for these problems.
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Eledromagnetic Response M odes and Extensions of Non-Linear Approximator

Extension to Stronger Inductive M odes

We first begin with the integral representation of the dedric field both internal and external to the scatterer

E(1)= Eu(n)+ Jor' G(rr) QUIEC) (1)
OxOXEp-kb En= iWHyJs+ OXMs
The LN Approximator estimates the internal field inside regions of anomalous conductivity by assuming that

E(r) = DE(r)*+ Of dr' G(r, 1)« QUrE()  (2)

at agiven observation point, only the loca value of the field isimportant, and this value (which isunknown) is
extrapolated aadossthe target. Of course, the LN tedhnique is acairate only when the locd gradients (and
higher order derivatives of theinternal field) aretruly insignificant. Certainly, for astrong inductive eupling of
source and scatterer, the dfedsof thefield gradientsare of importance, and in such casesthe LN approximation
will be inadequate. That is, for any internal point, r ,

Where, Q, isthe cmplex conductivity:

QN =iwu,[0(r)-0,]1+w’ po[ &(r)-€,]
Thus alowing the representation of the internal field by an analytic scatering operator

EM=TME N=T-QLH 1), L =[,, G @

The scatering operator, I, is dependent on the geometry of the scatterer, the position of the internal point and
the complex frequency. Thus, it derivation sometimes requires sme mathematicad effort but theredter is
computed relatively free ad provides in some instances sme wnsiderable improvementsin acaracgy. It also
allowsfor the cdculation of the magnetic field dredly by integrating over the gopropriate Greens' tensor times
theinternal eledric field determined by Eq. (2). Inthis edion, we asume that the magnetic permeability u is

constant throughout the medium and take the aurl of Eq(2) and use Eq(1) to dbtain
0°E()= DE(r) + QOJdr'GeE(r) (3)

Wheninductionis sgnificant, the gradientsin theinternal eledric field cannot be negleded when performing the
integral in Eq (1) to determine the internal eledric field. To estimate the dfed of the internal gradients, we
proceeal asfollows. If the @ntrast Q(r) isuniform over the scatterer, then formally taking spatial derivativesof

Eq(4) yields, in a shorthand notation
O%E=0°g+ Q[ dr' G e [E()+0EM)(r'-1)]  (4)

wherethe gradient operator 0= [1,0] = [10/0x0/0y,0/0z] . By Taylor expansion, Eq(4) can bewrittenas
a set of equations in the form

SLTieVi= B, 1=1234 (5)



V; and F,; arethreespacevedorsand T=., are 3x3 matrices. Hence, Egs.(5) congtitutesa12x12linea system

inthe unknowns v, , i = 1,2,3,4. Thetensorial expressionsT:i,- are functions of the geometricd and eledrica

properties of the scaterer, and of r and w. They are semi-analytic in neture, expresshble aa combination of
analyticd and numerica quadratures. This extension, we term the ILN approximation.

Extension to Multiple Targets:

A single scaterer is often insufficient to represent redistic eath situations and in such cases, the superposition
of responsesisonly valid for multiple targetswhich are sufficiently spatially separated. When utili zing multiple
targetsin conventiona tedhniques, one can often observe that interadions between anomali es are non-physicd.

For multiple targets (not in contad), the dfed of interadion (to first order) can be cdculated as follows.
Consider amodel of two structures in some proximity, and imagine arecever at alocaion interna to thefirst
anomaly. The recaver is energized with the host field (the field in the dsence of both scatterers) plus afirst
order badkscater fromthe second structure and viceversa. Thisanalysisisfirst-order; inredity theinteradion
series is infinite. However, evaluating more than the primary badkscatering contribution is computationally
expensive and often unnecessary. In particular, a cnverged series is necessary when the targets are in close
proximity (and it isin this case where many numericd tedhniques oftenfail) but the LN algorithms already have
aunique sense for thisinteradion: current is obliged by the technique to flow between the structures.

To put these concepts on a firmer foundation, consider cdculating the scatered field for a wlledion of n
conductivity anomalies and for the sake of argument, multiple LN prism scaterers ead with uniform eledricd
properties. Treaed separately, the LN approximation [1] saysthat the interna field inside prism i is

R = -1 s =
EO=0 g0= g_Q(o L(i)g EY, LW=[,d'G, i=1n

For the alledion of prisms, it is consistent with the LN approximation that for a point inside the aggregate
structure the internal field is given by

_— -1
E= g 57, L0 QG)E. E,
The scatered eledric field is then represented as
n

= = m==a -1 i
Es= Y J'V(i)d'l’GE[ I _ZT:lQ(J) L(J)] EO  (6)
i=1
When targetsarein close proximity, it is more persuasive physicdly to replaceQ” with Q¥ inddetheintegra
in Eq.(6). Thiswould then give the secondary field as
n

= — = _ -1
Esnve= 2 [Lodr'G E[ I - Q(i)zT:lL(j) ] EY (7)
i=1
This multiple scatering tedhnique is termed Near Field interadions, and represents continuous current flow
between scaterers. Although an approximation, it has proven effedivein representing datain these situations.

There ae other ways to incorporate multiple scattering. For instance, the field interior to the i objed can be
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approximated via
n

EOLT-Q"L"T=gY+ 5 [, drGlaY
j#i

(where the terms in the summetion can be considered as ondary sources) or
EV=FOTED+ 30 fodr GE]

giving the expresgon for the scatered field under single scattering, which we term Far Field interadions:
n

Eere= 3 [LodryGlro) e MO [ EQ+ 510 1 G(riur) - TV EP] (8)
i=1
Notethat without the internal summationin Eq.(8) theresult is 3mply the superposed scatered field, that isto

Say
n

Esw= 3 [,,dr'G-TEY (9)
i=1
is the response of the cmbined targets in Superposition.

Extension to Magnetic Effeds

In Maxwell’'s equations, when we dlow a @ntrast in permeability, we cawnot (profitably) take the aurl of
Ampere’s Law as in the Inductive Modes sedion. If the scaterer is only magnetic or only permeability
contrasts play arole, asin static (DC) magnetics, we can by analogy take the aurl of Faraday’sand Ampere's
law in an equivalent procedure. For variationsin conductivity, permittivity and permeabili ty, werequire anew
approad, namely we write the basic equations as

OxH= Ac"E+0,E+ ], (10)

OxE= Ay H+py H+M,  (11)
where (for now) we aume the host medium has constant parameters g, , ¢, and u,, and define

Ac"=0"-0)=[0-iwe] -[gp-iwe,] = AT -iAE
Ap’= p” - py=liau] -[iwp,] = iwAu
Q"= g nu”
Q"= u,Ac”

We now deampose the fields as

H=H,+H,,E=E, +E,

where

OxH,=0,E + Js (12)
OxH,=Ac[E,+E ]+0,E, (13)
OXEy= HHof Ms (14)

OxE,=Ap [Ho+Hol+uH,  (15)



sothat H, and E, have the familiar solutions

Ho= H+[dr'G-Q"H (16)

E,= E3+[dr'G+Q°E  (17)

OxOxHS-KEHS= D% J,

OxOXEg-kis Es= OXMs
Eqgs.(16), (17) are not yet suitable solutionsfor H, and E,, sincethereis gill adependenceon the unknown
quantities H, and E;. We derive smilar solutions for these fields, as

Ho= HO+(ul)y'0x[dr'G-QE  (18)

E,= E2+(ol)'Oxdr'GeQ"H  (19)
HS=(OxES-Ms)/y
ES=(OxHb-Jo) oy,

To procedal, we assumethat the LN approach [1] isvalid for the response (inductive modes are an extension).
In this context, Eqs.(16,(17) are gproximated by

=H =H
Ho=Hy+L H , E,=EJ+ L E  (20)
for the internal fields with
[ '=fdrGQ", ["=/drGQ"
Similarly, Egs.(18) and (19) can be written as

b =H b =E
Eg=Ep+P H,Hy=Hp+P E (21)
where we have introduced the new tensors
=H

P =(olyox[arGQH P o= (il yiox[ar' GQF

The physicd field approximations are then obtained by summing Egs.(20) and (21), yielding
=E =H

E=g,+L E+ P H (22)

=H =E
H=Ho,+ L H+ P E  (23)

E»= ES+ES, Ho= Hi+Hp
Interms of the LN scatering tensors

Substituting (24) into (25), we obtain



Note that in the DC magnetic case, there is no badground eledric field and the solution reducesto the static
magnetic case suitable for simulating the response due to the eath’s field.

Extensionsto Polyhedra

The LN theory (and its extensions to inductive modes, multi-body problems and permeadility effeds) is
independent of scatterer or primitive geometry. It isonly in the implementation where the geometry of the

scaterer plays a significant role, particularly, in the evaluation of the scatering tensors (T_ij operators which

includethe I' tensor). Thisismathematicaly non-trivial for even the smplest primitive geometries. Our present
developments allow the spedficaion of a(generally non-convex) polyhedral anomaly. Thisis lvedthrougha
speaalized triangle based polygon primitive which allows for a stable and rapid solution of even extremely
complicaed polygonal shapes.

Examples:

Resistivity and Induced Polarization:

Asafirst example, to show some basic but non-trivial cgpabili ties, we draw upon amodeling exercise
from nmunicipal water pumping considerations. This example was gedfic to Southern Ontario but is easly
adaptable to a more genera aquifer geometry.

Over thisareg there exists an aquifer at about 100m with athicknessof afew tens of metersunderlain
by amoreresistive basement. Thisaguifer isused extensively for municipa water supgies for small townsand
modest sized cities. Although the thickness of the aquifer is generally known, the aquifer contains non-
permedble day lenses. Thedistribution and gquantity of these lenses could affea significantly the predicted safe
pumping rate for the ayuifer.

Figure 1 indicates the model. The survey is a 50m dipole-dipole aray caried out at 7 frequencies
between 0.1 and 100Hz and over 4 survey lines (green) separated by 100m. There ae four separate
geometries for the lensesin the model. All 4 lenses have the same @nductivity ( 1 §/m). All targets have the
same dhargeability and decay constant except the longest target which isnon-polarizable. Thered and puple
targetsareflat at 140mwhilethered target isat 105m. The bluetarget isdipping so that its bottom isat 140m.
The original galvanic LN approximation extended to I P is utili zing for this modeling example.



Figure 1: Aquifer model

The question we asked is whether the resistivity, alone, can distinguish the objeds and if the targets
charaderistics are distinguishable.

The model is easy to define and defining areasonable sample gridistrivial. Ascan be seen from Figure
2, which showsthe Resistivity for the N=6 separation, the resistivity response does $ow al 4 targets, but the
variations are too smal to distinguish any structure in aredistic survey. At a separation of 300m, there is
sufficient response variation but the objeds are blurred together. The I P response (shown as phase angle) is
more distinguishing (Fig. 3). However, the model exercise indicaesthat the short dipole separationsand low
frequencies give the primary differentiation. However, not until N=4 and at relatively high frequencies ( i.e.
100Hz) isthere sufficient phase variation to beredisticaly measurable in the noise. However, for these settings,
the objeds are again lessdistinguishable in the synthetic data.

The Induced Polarizaion-Resistivity model takes lessthan Sminutes on astandard Pentium 1 or III . It
is, insummary, very simple and quick to definefully 3D Resistivity-1P targetsand study response variation due
to size, eledric parameters and orientation.
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Figure 2: Resistivity Response, N=6
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Figure 3: Induced Polarization Response : N=4, f=100Hz
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Clay Wedge — FEM Example:

For thisexercise, we mnsider the response variationsdueto a day wedge. For thisexample, we utili zeboth the
polyhedra extensions and the extensions to higher order inductive terms (ILN). The model of the wedge is
shown is Figure 4 (orange-red) with a redangle (blue) for comparison. The host is represented as a thin
resistive layer underlain by a 400 Ohm-m basement. The wedge is buried at 5m and is 100m by 50m thinning
from 15m in thicknessto the East. The wedge is given a Resistivity of 500hm-m. The block has the same
charaderistics except that it has a cnstant thicknessof 15m.

Figure 4: Clay Wedge M odel
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Figure 5: Clay WedgevsBlock EM 31 Response




We examine the response to an EM 31 system and show the comparison in Figure 5 where the wedge response
is $own in Red and block in Hue. We see a expeded reduction in response & we move west but it is
interesting that the short EM31 separation (3.66m) and the relatively high frequency ( 9800 Hz) shows
significant differencesin theresponse. All thisindicaesthe necessty even with simple examples of the need to
represent the true target geometry and proper simulation of inductive responses. Again, the simulationtimeis
extremely rapid requiring only about 10 seconds on a 0.8GHz PIll computer.

Conclusions

We have summarized various developmentsin rapid EM and magnetics modeling. Aswell, we have givenonly
two examples of how this smulation cgpability can be utilized for nea-surface @plicaions. The smulations
require only very standard computers and compute models accurately and rapidly in very short times. We
believe that inthe future these techniques will haveincreasing useinthe environmental and geotechnicd fields.
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