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Summary 
 

The development of rapid O(N)  numerical techniques, initiated by the pioneering of the Localized Non-Linear (LN) Approximator 

in 1993 (Habashy, Groom and Spies [1]), offers many possibilities for the simulation of realistic electromagnetic situations for a wide 
range of applications.  Very rapid calculation times combined with minimal memory requirements offer the potential to simulate more 
complex and thus more geologically meaningful models.  We have experimented with many developments in LN techniques, including 
extensions to inductive modes, multi-body problems, time-varying magnetic effects and polyhedral primitives.  Here we will 
summarize our work with the LN algorithm and these extensions. 
 
Introduction and Background 
 
To simulate three-dimensional electromagnetic scattering in the earth, either differential or integral equation techniques are used.  In 
terms of the large and often ill-conditioned matrices that must be  generated and solved, the difficulties arising in standard approaches 
are well known. This was the impetus behind the initial development of the Localized Non-Linear (LN) Approximator (Habashy, 
Groom and Spies [1]). 

 
While the early developments of the LN technique indicated the tremendous potential of the method, the original formulation provided 
only what is sometimes called the Acurrent channelling@ response. By deriving the magnetic field from the internal electric currents, 
inductive responses were poorly estimated (Murray [2]). This limitation is, however, common  to most electric field formulations and 
is therefore a serious impediment to their use in mining and environmental applications. 
 
The early LN technique provided excellent representations of full wave internal field scattering for secondary galvanic responses in the 
case of a single spherical scatterer.  The algorithm was later extended to right rectangular prisms of arbitrary aspect ratio (Groom, 
Walker and Dyck [3])  providing the Abuilding blocks@ for more realistic and complex models.  To fully implement the LN algorithm, 
techniques were required to handle multi-body interactions.  Then, for a wider range of models to be tractable, a more amorphous type 
of scattering primitive was required (a non-convex polyhedron) and the inability of the technique to model inductive responses had to 
be addressed. 
   
In mining and environmental applications, conductivity is not always the only factor governing the response of anomalous bodies.  
Although, the original LN technique considered variations in conductivity and electrical permittivity,  magnetic (susceptibility) 
variations can also play a role. Algorithms which can tolerate simultaneous variations in all electrical properties are extremely 
important for many geophysical applications of electromagnetics. 
 
The task of this paper is to first explore the theoretical extensions of the original LN technique to inductive modes, to multiple-body 
interactions, to magnetic effects and to polyhedra.  We shall then illustrate the importance of all of these concepts in examples arising 
from data interpretation studies. 
 
Inductive modes ( ILN technique ) 
 
As mentioned, the LN approximator is only accurate within the regime of current channeling, or when so-called galvanic effects 
dominate the electromagnetic response. 
 
The LN Approximator estimates the internal field inside regions of anomalous conductivity by assuming that at a given observation 
point, only the local value of the field is important, and this value (which is unknown) is extrapolated across the target.  Of course, the 
LN technique is accurate only when the local gradients (and higher order derivatives of the internal field) are truly insignificant.  
Certainly, for a strong inductive coupling of source and scatterer, the effects of the field gradients are of importance, and in such cases 
the LN approximation will be inadequate.  
 

According to Maxwell=s equations (in a non-homogeneous medium) EM fields E(r) and H(r)  and sources (r)J s  and (r)M s  

are related by 



 

(2)        M  + H i  = E

(1)      J  + E ]i-[  = H

s

s

ωµ
ωεσ

×∇
×∇

 

assuming an e t-iω  time dependence.  The medium is characterized by the electromagnetic properties ε , µ and σ .  If we assume 

(in this section only) that the magnetic permeability µ  is constant throughout the medium, then we can take the curl of Eq.(2) and 

use Eq.(1) to obtain 

 
If the scatterers are embedded in a host medium which is homogeneous and nonmagnetic, the solution of Eq.(3) can be  expressed  in 

terms of the usual dyadic Green=s function  G  related to the homogeneous background as 

where (r)Eb  is the response of the impressed sources in the host medium.  The integral in (4) is over the support of Q(r) , the 

contrast in material properties between the scatterer and the host, which is purely electrical in the present context, i.e., 
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If the contrast Q(r)  is uniform over the scatterer, then formally taking spatial derivatives of Eq.(4) yields, in a shorthand notation 

where the gradient operator ]z/,y/,x/[1, = ][1, =* ∂∂∂∂∂∂∇∇ .  By Taylor expansion we have 

which can be written as a set of equations in the form 
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V i  and F i  are three-space vectors and T ij  are 3x3  matrices. Hence, Eqs.(8) constitutes a 12x12  linear system in the 

unknowns V i , 1,2,3,4=i . The tensorial expressions T ij   are functions of the geometrical and electrical properties of the 

scatterer, and of r  and ω .  They are semi-analytic in nature, expressible as a combination of analytical and numerical quadratures.  

Note that Γ =T 11

-1
 is just the LN tensor of  [1]. 

 
Multiple interactions 
 
In electromagnetic scattering studies, a typical model is a single uniform (conductivity) anomaly. However, an isolated scatterer is 
often insufficient to represent actual geology and in such cases, the superposition of responses is only valid for multiple targets which 
are sufficiently spatially separated. 
 
For multiple targets, the effect of interaction (to first order) can be calculated as follows. Consider a model of two structures in some 
proximity, and imagine a receiver at a location internal to the first anomaly. The receiver is energized with the host field (the field in 
the absence of both scatterers) plus a first order backscatter from the second structure and vice versa. 
 
This analysis is first-order; in reality the interaction series is infinite. However, evaluating more than the primary backscattering 
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contribution is computationally expensive and often unnecessary. In particular, a converged series is necessary when the targets are in 
close proximity (and it is in this case where many numerical techniques often fail)  but the LN algorithms already have a unique sense 
for this interaction: current is obliged by the technique to flow between the structures. 
  
To put these concepts on a firmer foundation, consider calculating the scattered field for a collection of   n  conductivity anomalies 
(for the sake of argument,  multiple LN prism scatterers each with uniform electrical properties).  Treated separately, the LN 
approximation [1] says that the internal field inside prism i  is  
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For the collection of prisms, it is consistent with the LN approximation that for a point inside the aggregate structure the internal field 
is given by 
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The scattered electric field is then represented as 
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When targets are in close proximity, it is more persuasive physically  to replace  Q(i)
 with Q(j)

 inside the integral  in  Eq.(9). This 

would then give the secondary field as 
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This multiple scattering technique is termed Near Field interactions, and represents continuous current flow between scatterers. 
Although an approximation, it has proven effective in representing data in these situations. 

There are other ways to incorporate multiple scattering. For instance, the field interior to the ith  object can be approximated via 
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(where the terms in the summation can be considered as secondary sources) or  
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giving the expression for the scattered field under single scattering, which we term Far Field interactions: 
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Note that without the internal summation in Eq.(11) the result is simply the superposed scattered field, that is to say 
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is the response of the combined targets in Superposition. 
 
Magnetic effects 
 
In Maxwell=s equations (1) and (2), when we allow a contrast in permeability, we cannot (profitably) take the curl of Eq.(2) as in the 
Inductive Modes section.  If the scatterer is only magneticCor only permeability contrasts play a role, as in static (DC) magneticsCwe 
can by analogy take the curl of Eq.(1) and use Eq.(2) in an equivalent procedure. For simultaneous variations in conductivity, 
permittivity and permeability, we require a new approach. 

Assuming the host medium has constant parameters σ b , ε b , and µb , we rewrite Eqs.(1) and (2) as 
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We now decompose the fields as 

E+E =E   ,H+H=H *0*0  

where the four quantities satisfy 
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so that H 0  and E0  have the familiar solutions 
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Eqs.(19), (20) are not yet expressed solutions for H 0  and E0 , since there is still a dependence on the unknown quantities H *  and 

E* .  We derive similar solutions for these fields, as 
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To proceed, we assume that the LN approach [1] is valid for the response ( inductive modes are in development).  In this context, 
Eqs.(19,(20) are approximated by 
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Similarly, Eqs.(21) and (22) can be written as 

where we have introduced the new tensors 

The physical field approximations are then obtained by summing Eqs.(23) and (24), yielding 

In terms of the LN scattering tensors 

we can rewrite Eqs.(25) and (26) as 

Substituting (27) into (28), we obtain 

 
Polyhedra 
 
The LN theory (and its extensions to inductive modes, multi-body problems and permeability effects) is independent of scatterer or 
primitive geometry.  It is only in the implementation where the geometry of the scatterer plays a significant role, particularly, in the 

evaluation of the scattering tensors ( T ij  operators which include the  Γ tensor). This is mathematically non-trivial for even the 

simplest primitive geometries. Our present developments allow the specification of a (generally non-convex) polyhedral anomaly. 
 
Model Results and Interpretation 
 
The examples arise from an interpretation study of  time domain data collected in northern Quebec. The simulation is for a base 
frequency of 15Hz, with data channels in the off- time. The exploration targets are massive (or disseminated) sulphide ores embedded 

beneath large northerly dipping peridotite structures hosted in volcanic sediments (700 .mΩ at surface). The loop is to the south of 
the peridotite structure. 
 
The ILN technique is needed to model the sulphide ores. Figure 1 shows comparisons to a thin-sheet model (Walker and West [4]) 
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measuring 400 m  square at 25 S .  Comparisons are good with expected variations caused by enhanced current channeling from the 
prism model. 
 

The dipping peridotite structure has a weak conductivity contrast and so responses are mainly current channeling. Two 
criteria effect the responses of the peridotite. First, the structures have the potential to  be magnetic.  Figure 2 compares the non-

magnetic response of a large 10  .mΩ  peridotite to another with k=1. The enhanced edge effects are from the magnetostatic 
responses to time-varying incident magnetic fields in the off-time. Second, the host material has a sharp conductivity increase at 350 
m . The peridotite plunges into the basement and continues to be excited late in time by the slow outward and downward migration 
of current. This  excitation, at depth, causes migration of current to the top of the structure resulting in  slow decays along the profile. 
To provide the right physical interactions within the body, the peridotite prism is split into two polyhedra at the discontinuity and 
Near Field interactions utilized between the polyhedra. Only this interaction provides the long tails and slow decays observed in data.  
 
The sulphide ore model is incorporated into the combined model and the effects of the ore in contact with the peridotite are 
investigated. Far Field interactions simulating lack of contact and Near Field interactions simulating electrical contact will be shown. 
 
 
 
 
Conclusions 
 
Extended developments of the LN technique have proven to be extremely fruitful in the interpretation of real data. 
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