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Bevond the Born and Rytov Approximations:
A Nonlinear Approach to Electromagnetic Scattering

TAREK M. HaBASHY, Ross W. GROOM, AND BRIAN R. SPIES
Schiumberger-Doll Research, Ridgefield, Connecticut

The Born and Rytov approximations, widely used for solving scattering problems, are of limited
utility for low-frequency electromagnetic scattering in geophysical applications where conductivity
can vary over many orders of magnitude. We present four new, relatively simple nonlinear estimators
that can be used for rapid electromagnetic modeling. The first, termed the static localized nonlinear
approximation, is designed specifically to correct the magnitude of the electric field internal to the
scatterer. The second, termed the localized nonlinear approximation, improves the estimate of the
phase of the scaitered field and includes some of the cross-polarization effects due to full wave
scattering. Two further new estimators, based on the Rytov transformation (the localized nonlinear
Rytov and the static localized nonlinear Rytov approximations) are designed to further improve the
estimation of the phase of the scattered field, especially at high frequency and for larger size scatterers.
Although these approximations are nonlinear functions in conductivity, they are generally much faster
to compute than the full forward problem, and are almost as efficient as the Born or Rytov
approximations. Moreover, the enhanced accuracy of the new estimators has made us optimistic about
their application to low-frequency three-dimensional inverse problems in electromagnetics. The
approximations developed in this paper will also be applicable to fields such as quantum mechanics,

optics, ultrasonics, and seismology.

INTRODUCTION

The Born and Rytov approximations are widely used for
solving scattering problems in acoustics, elastodynamics,
electromagnetics and quantum mechanics. The Born ap-
proximation and the Born series were developed by M. Born
in 1926 (Born, 1933] in connection with the solution of what
is now known as the Lippmann-Schwinger integral equation
that describes many-body scattering in quantum mechanics.
The original Born approximation dealt with the scattering of
a plane wave by a localized scatterer in a homogeneous
medium (the background medium). Now, it has come to
denote any approximation of the integral equation of scat-
tering in which the total field in the integral over the
scattering volume is approximated by the field in the back-
ground medium. When the background medium is more
complex than a homogeneous medium (e.g., a layered me-
dium), the approximation is usually called the distorted-
wave Born approximation. In fact, for electromagnetic prob-
lems, an approximation using the background field as the
internal electric field in the scattering integral was developed
by Lord Rayleigh in 1881 [Jackson, 1975).

Approximating the total internal electric field by the
background field is reasonable for small material contrasts as
long as the scatterer is not too large and the frequency not
too high [Born and Wolf, 1980; Nieto-Vesperinas, 1991].
However, in many low-frequency geophysical applications,
moderate- and high-conductivity contrasts cause both the
amplitude and phase of the internal electric field to differ
greatly from background values.

The Born approximation is also popular in inverse scat-
tering since it renders the scattering linear with respect to the
material properties. When the background medium is homo-
geneous, the inverse problem can often be solved analyti-
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cally in a form that is easy to compute [Oristaglio, 1989].
Limitations of the Born approximation in a homogencous
background medium can be ameliorated by an iterative
approach, where the background medium is updated at each
iteration and the distorted-wave Born approximation is used
[Habashy et al., 1986). This approach, however, does not
always converge rapidly, particularly at high frequencies and
for large scatterers. In electromagnetic problems, it is also
less effective for transverse magnetic (TM) polarization than
for transverse electric (TE) polarization problems [Habashy
et al., 1986, 1990].

Related to the Born approximations is the Rytov approx-
imation which assumes a particular functional form for the
field (in terms of the exponential of a complex phase func-
tion) before linearizing the scattering problem. The Rytov
approximation or transformation is widely used in problems
where the length scale of fluctuation is large compared to the
wavelength, since its exponential representation is thought
to be more representative of wave propagation than the
algebraic series representation of the Born approach.

In this paper we show that certain modifications of the
Born and Rytov approximations can improve their accuracy
dramatically. We present new and relatively simple approx-
imations for the internal electric field which largely account
for the full scattering. We illustrate these approximations
using the electromagnetic response of a spherical scatterer.
Results for the new approximations are much better than the
Born and Rytov approximations for conductivity contrasts
over several orders of magnitude. These new approxima-
tions are generally much faster to compute than the full
forward problem and are almost as efficient as the Born or
Rytov approximations. The new approximations should
have wide applicability both for inverse and forward scatter-
ing problems in electromagnetics. Distorted-wave Born or
Rytov algorithms will be greatly enhanced, not only in terms
of speed and accuracy but also in their range of applicability.

The formulation outlined in this paper for the spherical
geometry can be generalized to geometries such as rectan-
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gular parallelepiped, rectangular cylinders, etc. Complex
models can be constructed using these simple building
blocks, i.e., rectangular prisms or cells of appropriate size.
Furthermore, interactions between cells out to an appropri-
ate distance can be readily incorporated by this formulation.

The general concept may also be readily applied to scat-
tering problems in other fields such as quantum mechanics,
optics, ultrasonics and seismology.

THE BORN APPROXIMATION IN ELECTROMAGNETICS

This section develops the integral equation for electromag-
netic scattering that form the basis for the Born and Rytov
approximations. In formulating the problem as an integral
equation, one assumes that the scatterer or object {of sup-
port V) is embedded inside a background medium, which is
not necessarily homogeneous. Scattering from the object is
described by a volume distribution of currents induced
inside the scatterer. The wave equation corresponding to
this representation of the electric field (in nonmagnetic
media and with an e 7' time dependence) is

V x ¥ x E(r) - kZE(r) = Q(r)E(r)

+ iwpods(r) — V x My(r), (1

where the wavenumber %, of the background medium is
given by

ki =iwpooy + @ oy, @)
and Q(r) is the change in the material properties from the
background medium,

0(t) = iwpofa'(r) — o]+ o uelr) - e,

= iwpuglo(r) = op) = iwpodo(r). )

In these equations, Js(r) and M,(r) are the impressed
electric and magnetic sources, £(r) and o'(r) are the permit-
tivity and conductivity distributions, while &, and &, are the
background dielectric permittivity and electrical conductiv-
ity. In the second part of equation (3), o(r) and o, are the
complex conductivities which include the effects of displace-
ment currents.

The solution of equation (1) can be expressed with a
dyadic Green’s function which is governed by the appropri-
ate boundary conditions and satisfies the equation

VX VxGr, ) —kiGr v)=Is(r~r), (4

where I is the identity dyadic.
For a homogeneous background, the solution to equation
(4) is [Kong, 1986)

. .1
G(r, r') = [1 +—= VV]g(r, r'), (5
kp

where g{r, r') is the scalar Green’s function which satisfies

Vig(r, ') + kpglr, v') = ~5(r —r'), (6a)
and is given by
eika/r‘r',
L) = ———— &b
glr, 1) py— (6b)
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Thus the solution of equation (1) ts given by [Kong, 1986;
Yaghjian, 1980]

E(r) = Eo(r) +f dr'Glr, r') - O )E(r"), (7a)
vy
ré v,
[ .
E(r) = Eu(r) + (1 + = VV)
ki
f dr’ g(r, ¢')Q(r')E(r"), rev, (76)
v,

where V, is the support of Q(r). The response of the
impressed sources in the background medium, Ey(r), is the
solution of the wave equation

VXV X Ey(r) — kJEy(r) = iwp ol (r) — ¥ X My(r).  (8)

Care must be exercised in using equation (75) when
commuting the VV operator with the integral operator be-
cause of the nonintegrable singularity of the derivatives of
the scalar Green's function g(r, r') atr' = r.

Equation (7}, for both internal and external points, can be
recast in a form that separates the scattered field into
components which we term inductive (due to the vector
potential) and galvanic (due to the scalar potential) [Jackson,
1975]:

E(r) = Ep(r) + f dr’ g(r, r')O(r')E(r’)

v,

+ L,VV-J dr' g(r, r)O(r)E(r'). 9)
ki v,

Any one of equations (7a), (76), or (9) can be employed
as the basic integral equation of electromagnetic scattering.
In these equations, the total field is represented as the sum of
the background field E,(r) and the scattered field (the
integral terms). The scattered field is generated by the
scattering currents (and charges) induced inside the scatterer
by the interaction of the total electric field E(r) with material
variation Q(r). These equations are nonlinear in Q(r) since
the total field, which multiplies Q(r), also depends nonlin-
early on Q(r).

Under the Born approximation the total eiectric field in the
integral terms is approximated by the background field. This
approximation gives a representation of E(r) that is linear in
Q(r). In fact, the Born approximation is the first term in a
solution of equation (7) by successive iteration. The full
series is called the Born or Neumaon series. The conver-
gence of this series expansion is of fundamental importance,
since such expansions in perturbation series are generally
either divergent or very slowly convergent for large con-
trasts. To analyze the convergence, we will use a dimension-
less contrast defined as

1
8 = max {{Q(r)}, (10)
k5]
which simplifies to (of.x — o})/c), when displacement

currents are neglected. If one applies the Born approxima-
tion to equation (9) one can show that, in the low-frequency
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limit, the strength of the induction term in the scattered field
is determined by |k Z|D?§ (where D is the upper bound of the
distance of any two points belonging to V), whereas the
strength of the galvanic term is determined by & [Habashy et
al., 1986). Thus the induction term can be made arbitrarily
small by either lowering the frequency (lowering k,) for a
given contrast & or by lowering the contrast & for a given
frequency. On the other hand, the galvanic term can only be
made small by lowering the contrast & Thus, at a frequency
that is sufficiently low, the sum of the inductive terms in the
Born series can converge even for large contrasts. The
galvanic terms, however, will only converge when the
conductivity contrast § is small; that is, the background
medjum must have a conductivity distribution close to that
of the scatterer. This requirement can be met in many cases
only by using a complex background medium. If the back-
ground medium is complex, it can be difficult or costly to
compute both the background field and the Green’s function
in equation (7). This greatly limits the usefuiness of the Born
approximation.

In summary, the fundamental difference between the
induction and galvanic terms lie in the degree of nonlinearity
associated with each term. In equation (9) both the induction
and galvanic terms are nonlinear in the conductivity distri-
bution of the scatterer Q(r), because the total internal
electric field also depends nonlinearly on Q(r). However, the
induction term is almost linear when [kZD?8 is small,
whereas the galvanic term is highly nonlinear (unless 8 is
small). Thus the Born approximation, which linearizes the
problem in Q(r), is expected to be much better for the
induction term than for the galvanic.

In general, the Born approximation is a weak scatterer
approximation that is accurate when the difference between
the internal and background electric fields are small. This
restriction limits the domain of usefulness of the Born
approximation. However, in cases where the scattered field
consists only of inductive effects, the Born series should
work well at low frequencies and will not require many terms
to converge.

THE RYTOV APPROXIMATION IN ELECTROMAGNETICS

Another commonly used approximation for scattering
problems is the Rytov approximation [Keller, 1969; Orista-
glio, 1985; Sancer and Varvaisis, 1970]. In this section we
review the Rytov approximation in electromagnetics and
compare it to the Born approximation.

The vector wave equation for the electric field can be
rewritten as

VZE + k’E ~ V{V-E} = —iwpod, + VX M, (11)
with
k2=iwp.00'(r)=iw/.¢00"(r)‘— wlpge(r). (12)

where & is the wavenumber of the scatterer. From the
equation for the conservation of charge, we have

Vo 1

V.E=-—E~-—V-]J,. 13)
o o

Hence the vector wave equation for the electric field can
be written as
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. Vo
VE + kE + v{j . E} = ~jwpels

1
- v{— V-Js} +UXM,.  (14)
o

The third term in the left-hand side of equation (14) is
commonly referred to as the polarization term, since it
represents the effect of the polarization charges in the
medium. At high frequencies, i.e., when the wavelength A is
small compared to the characteristic dimension D of the
scatterer and when o(r} is smoothly varying, the polarization
term is of the order of |E|/DA, which is small compared to the
second term of the left-hand side of equation (14), which is of
the order of |[E/A%. Thus, when the wavelength is much
smaller than the scale size of the scatterer, the polarization
term can be neglected and the vector wave equation reduces
to uncoupled scalar equations for each cartesian component
of E(r) [Tatarskii, 1971]. Furthermore, the third term in the
left-hand side of equation (14) does not contribute to the
scattered field outside the support of the scatterer since it
can be shown that it represents a “‘nonradiating’’ current
source [Lindell, 1988). The source-free wave equation gov-
erning an arbitrary cartesian component of the electric field
is

V2E(r) + k°E(r) = 0. (15)

The Rytov transformation consists of representing the
solution of equation (15} in the form
E(r) = Ey(r)e*™, (16)
and developing a series expansion for the complex phase
function {r). The Rytov approximation is used in problems
where the length scale of fluctuation is large compared to the
wavelength, since its exponential representation is more
representative of wave propagation than the algebraic series
representation of the Born approach. Substituting equation
{16) in equation (15) and rearranging terms [Kak and Slaney,
1988; Nieto-Vesperinas, 1991; Sobczyk, 1985] gives

(V24 kNEp) = —[(V9)? + Q()IE,.

Equation {17) is nonlinear in ¢ but is linearized under the
Rytov approximation by neglecting the first term on the
right-hand side of equation (17) relative to the second term

an

(VE+ KES) = =~ Q(r)E,. (18)

On the other hand, the Born approximation E®(r) of
equation (15), cast as a differential equation, is

(V?+ DE® = —Q(r)E,, (19

Thus the phase function ¥ in the Rytov approximation is
related to the Born approximation for the scattered wave
field, E®(x), by

W(r) = EB)/E(r). 20)

Clearly. when |[E'®/E,| << 1, the Rytov approximation
reduces to the Born approximation. Since equation (17) is
exact, the Rytov approximation is valid when

Q= vy (21)



1762

In the previous section, we analyzed the Born approxima-
tion in the low-frequency limit. In the high-frequency limit,
the Born approximation is accurate when the change in the
phase between the wave propagating through the scatterer
and the background field is much less than unity [Kak and
Slaney, 1988; Sobczyk, 1985]. Thus, in the high frequency
limit, the condition for good accuracy of the Born approxi-
mation can be expressed mathematically as

[ ~ kD ~ kyD| < |ko|D[(1 + 8)'% - 1]=1,  (22)

which simpilifies to

(23)

Comparing equations (21) and (23) it is clear that in
contrast to the Born approximation, the size of the scatterer
is not a factor in determining the accuracy of the Rytov
approximation. The gradient of  is just the change per unit
distance in the complex phase of the wavefield as given by
equation (16). Thus it is the change in the phase ¢ that is
important in determining the accuracy of the Rytov approx-
imation and not the total phase through the scatterer as with
the Born approximation.

In the high-frequency limit,

1kl D6 = 1.

w(r) ~ ik — kp} -1, (24)
and hence
o\
V4] ~ [k = k| = 1] (1 +k—2) -1 @3
b
Substituting equation (25} in equation (21) gives
172 172
<1 +k_Q2) -1 Zl (26a)
b b
which simplifies to
| Q2|2 <1, (265)

Hence the condition for the good accuracy of the Rytov
approximation becomes

s<<1. (eX)]

Thus, in the high-frequency regime, the Rytov approxima-
tion is accurate only for small contrasts between the scatter-
ers and the background medium. Moreover, comparing
equations (23) and (27), one concludes that for a given
contrast, the Rytov approximation is accurate over a larger
range of scatterer sizes than is the Born approximation, A
schematic diagram showing the range of accuracy of the
Born and Rytov approximations is shown in Figure 1.

In the next sections we describe new approximations for
the scattered electric field which are similar in spirit to the
Born and Rytov approximations but are accurate over a
much wider range of frequencies and contrasts in physical
properties.

A LocALIZED NONLINEAR APPROXIMATION
FOR INTERNAL ELECTRIC FIELD

Consider again equation (7), the basic integral equation of
electromagnetic scattering. For observation points (r € V)
inside the scatterer, one must be careful in defining the
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& ¥ =10 (K, 19)

maom-lnducuon

Fig. 1. The range of validity of various approximations. The
abscissa is x = In (8), where § is the contrast in material properties
(defined in equation (10)). The ordinate is the logarithm of the
product of the background wavenumber and a characteristic dimen-
sion of the scatterer. The parameter a is a negative number such that
e® << 1. The Rytov approximation is valid in the range |k,|D > 1
and & << 1. The Born approximation is valid in the range {k,[D§ <<
1 in the high-frequency regime (J4,|D > 1). In the low-frequency
regime {{k,|D < 1), the galvanic part of the scattered field is valid
under the Born approximation in the range § << [, whereas the
induction part is valid in the range |k,|>D?8 << 1. The new
approximations introduced in this paper have a range of validity
which extends beyond the shaded zones and into the unshaded area.

volume integral because of the singularity of the Dyadic
Green’s function. For interior points, equation (7) can be
rewritten as

E(r) = Ey(r) + (1 + iz v f dr’ g(r, r')Q(x") | - E(r)
Vs

ky

+ J' dr' G(r, r)QU')E(Q) —E(r)].  (28)

The terms on the right-hand side involving E(r) cancel in the
above equation, when interpreted properly according to
equation (7). Thus equation (28) is equivalent to equation (7),
but the singularities in the integrands are now integrable as
explicitly expressed. Indeed, the integrand of the last inte-
gral of equation (28) is now integrable since E(r') — E(r)
vanishes as r’ — r where G(r, r') is singular.

Further algebraic manipulation of equation (28) gives the
following integral equation of the internal electric field:

E(r) = [(r) - | Ey(r) +J dr’ G, 1)

Vs

CQrEC’) -~ E(n)}, rE€V, (29)

where ['(r) is a dyadic which we call the depolarization
tensor and is given by
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?Pl —_
L

A -1
vv)j ar’ gir, r’)Q(r’)} :

IV

/ (30)

Under the Born approximation, the electric field in the
integral over the volume of the scatterer is simply approxi-
mated by the background electric field. An alternative ap-
proximation for the electric field in the integral of the electric
field is given by the first term in equation (29)

E(r)=T(r)-Eyir), reV, (3B

An argument in favor of this approximation is as follows:
from the singular nature of G(r, r’) at ¥’ = r one may expect
that the dominant contribution to the integral in equation (7)
comes from points in the vicinity of r' = r. If the internal
electric field E(r’) is approximated by its value at r’ = r, the
second term in equation (28) gives the full approximation of
the scattered field, with an error given by the third term. This
approximation is particularly appropriate if the internal
electric field is a smoothly varying function of position, since
the approximation in equation (31) assumes that

|Ep(r)| >

f dr' Gir, ) QUER) ~ B} (32)
Vs

reVv,

The right hand side of the above inequality can be ex-
pected to be small because E(r') — E(r) is zero where G(r, r’)
is singular, i.e, at r’ = r._Hence the accuracy of the
approximation depends on G(r, r') falling off sufficiently
rapidly as r’ moves away from r that variations in the
internal electric field from its value at r are small. We call the
approximation given by equation (31) the localized nonlinear
(LN) approximation. The approximation depends nonlin-
early on O(r). B

If Q # 0, then I'(r) has a DC limit fg(r) with elements
entirely real and different from /. In this DC limit, equation
(31) becomes

E(r) = Fy(r) - Ey(r), rev,. (33)
which we call the static localized nonlinear (SLN) approxi-
mation. It accounts for the difference in amplitude of the
total internal field from background field caused by charge
accumulations on the boundaries of the scatterer.

Under the localized nonlinear (LLN) approximation, the
electric field at points outside V is given by

E(r) = Eyfr) + f dr’ G(r, ©') - Qe () - Eyfr'),

v,
rEV, (34)
and the magnetic field by
1
H(r) = —— V x E(r) = Hy{r) + -
iwpg iwpg
. f dr’ [Vg(r, r')1 x Q) P(r) - Ep(r’).  (39)
v,
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For the simpler static localized nonlinear (SL.N) approxima-
tion, T(r) is replaced by I'y(r) in equations (34) and (35).

Expanding the depolarization tensor I'(r) in equations (34)
and (35) in a Taylor series expansion in & shows that the LN
approximation accounts for some of the multiple scattering
within the scatterer. This is to be compared to the standard
Born approximation, the first-order term in the complete
Neumann (or Born) series [Newton. 1966], which ignores all
multiple scattering.

Also, when applied to a conducting inhomogeneous scat-
terer embedded in an insulating background, the Born ap-
proximation may diverge in the zero frequency limit depend-
ing on the source excitation, since

Oryiki—ic'(t)we,—=,  @—0. (36)

This is a consequence of approximating the scattering cur-
rents inside the scatterer by those induced by the back-
ground field,

Joo(r) = {o'(r) — iw[e(r) — & ,]}E(r)
={o'(r) ~iw[e(r) — e, JEp(r) (3D

which gives rise to a charge density

1 1
Pselt) = — V- Jo(r) = — {V{o'(r) ~ iwe(r)]} - Eylr)
lw 1w
(38)

that can diverge in the low-frequency limit depending on the
source excitation, since

Va'(r)
peelr) = —
iw

+Ep(r) — =, w = 0. (39)

In the low-frequency regime, the background field is a
very poor estimate of the internal fields of a conducting
scatterer in an insulating background medium. This diver-
gent behavior of the Born approximation is alleviated by the
newly developed LN approximation, which produces a finite
contribution from the surface charges to the scattered field in
the low-frequency limit. Thus unlike the Born approxima-
tion, these new estimators should be applicable to applica-
tions where the host media is extremely resistive.

A LocaLizED NONLINEAR RYTOV APPROXIMATION

An arbitrary component of the electric or magnetic field
can always be represented as the sum of a background field
and a scattered field,

F(r) = Fy(r) = F(r). (40)

As described earlier, the Rytov transformation consists of
representing the wavefield component F(r) in the following
form:

F(r) = Fy(re?™, (41)
and developing a series expansion for the complex phase
function ¢(r). Comparing equations (40) and (41), gives

F(r)

* . 42
Fy(r) “

g(r)=In {l
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Assuming |F/F,| < 1, invoking the Taylor series expan-
sion of the logarithmic function, and retaining only the first
term gives the following approximate representation of i(r)

pry =20 (43)
Fyr)’
and hence
Fy(r)
F(r) = Fu(r) exp ol (44)

Replacing F(r) by its first-order Born approximation,
F A‘.B’(r), we obtain the standard Rytov approximation de-
noted by Fg(r)

Fi“’(n} 45

Fy(r)
Replacing F,(r) by its static localized nonlinear (SLN)
approximation F¥¥(r) gives a new approximation, which

we call the static localized nonlinear Rytov (SLNR) approx-
imation, denoted by Fg) nr(r)

FRr(r) = Fy(r) exp {

—_ (46)

Fp(r)

Finally, replacing F(r) by its localized nonlinear (LN)
approximation FV(r) gives another new approximation,
which we call the localized nonlinear Rytov (LNR) approx-
imation, denoted by F ng(r)

FgSLN)(l')
Fspnr(r) = Fy(r) exp { }

F(LN)(I.)
- } 47

Fy(r)
The accuracy of all of these approximations is tested
numerically in the next two sections. We show that these

approximations agree well with exact computations, even in
the case when the condition |[F,/F,| < 1 is not satisfied.

Fyngr(r) = Fy(r) exp {

APPLICATION TO A SPHERICAL SCATTERER

The approximations developed in the previous section
depend on the geometry of the scatterer. To illustrate the
computation of these approximations and also to demon-
strate their improvements over the Born and Rytov approx-
imations, we study in detail a uniformly conducting spherical
scatterer, of complex conductivity o, embedded in a uni-
form whole space, of complex conductivity .

In Appendix A, we explicitly express the internal electric
field, in the LN approximation, in terms of the background
field and functions which are solely dependent on geometry,
frequency, and the conductivity of the background medium.
The expression for the internal electric field in the LN
approximation is given explicitly as

Aa \ !
Er}=|1-— h(r))

Tp
| Eplr) + —A—Hp(r) ———ﬁ(:)— Bl, reV, (48
Ty 1~ (Aa/o,)s(r)
where
Ao =0,— 0y, (49a)
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o, = a0y —iweg, (495)
T, =0 — iwey. (49¢)
with the prime indicating real part, and
N Wik
ki) = ) + T oy Yked)
r kyr
. ~cos (kpr)  sin {kpr)
. [sm (kyr) + T - W} (50a)
f(r) Yrlkpa)
plr) = frr) - ——= -
r kyr
. cos (kpr) sin (kpr) |
. [Sln (kpr)y +3 ‘—;(br— - (k‘,r)z | (50b)
s(r) = h(r) + p(r) (50¢)
_ g " 1 L+ wk sin (kyr)
flr) = L r' g(r, r') = I wikya) K
(50d)
Pikya) = (1 — ikya)e e, (51)

The primes on the function f in equation (50) denote
differentiation with respect to the argument. The low-
frequency asymptotes of these expressions, when [k, a| <<
1, are

h(e) = =1+ & (kpa)? = 2 (52a)
15
p(r) =& (k)2 (525)
In the DC limit, we have
hir) = —3 (530)
p(r)—>0 (53b)

and therefore from equations (A2) and (A10) of Appendix A,
we obtain

Por) = (14127 Yo (2 ) 54
r= + = — = | —— .
ol 3 oy, o+ 20, G4
The factor % is referred to as the depolarization factor
which originally appeared in connection with scattering from
a dielectric sphere [Van Kranendock and Sipe, 1977;
Yaghjian, 1980].
From equations (33) and (54) the internal electric field
under the SLN approximation is given by

E(r) = (

From equation (48) it is clear that the internal electric field,
under the localized nonlinear (LN) approximation, is given
by the background field modified by an additive and a
multiplicative factor. The additive factor corrects mainly for
the phase and slightly for the amplitude. It also estimates

)Eb(r), rev,. (55)

o+ 2oy
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cross-polarization effects due to the scatterer. The multipli-
cative factor corrects primarily for the amplitude and slightly
for the phase. The simpler SLN estimator, with p(r) = 0, is
only a multiplicative factor, and thus equation (55) contains
no cross-polarization terms.

With the internal electric field estimated by either equation
(55) or equation (48), the SLN or the LN approximations to
the corresponding external scattered electric and magnetic
fields follow from equations (34) and (35). This then allows
the computation of the SLNR and LNR approximations
from equations (46) and (47), respectively.

For most geophysical applications the fields outside the
scatterer are of principle interest. We will examine the
accuracy of the approximations derived above for the exter-
nal scattered electric and magnetic fields and also the inter-
nal total electric field (Appendix C) by comparing the esti-
mated solutions with an exact solution for a sphere over a
wide range of conductivity contrasts between the scatterer
and the background medium.

Comparison of Approximations With Exact Solutions:
External Scatrtered Magnetic Field

Formulation of the depolarization tensor for a spherical
scatterer in a dipolar field is straightforward. The main
reason for using this configuration is that we are able to
compare the approximations to an accurate benchmark
solution for full-wave scattering from a sphere in a conduct-
ing background (R. W. Groom and T. M. Habashy, manu-
script in preparation, 1992) for an arbitrarily positioned and
oriented magnetic dipole. The formulations used to calculate
the estimated scattered fields are given in Appendix B.
Figure 2 illustrates the model, coordinate system, and sym-
bols for the models used.

In most geophysical applications the magnetic field is of
primary interest. Thus we begin our examination of the
accuracy of the new estimators as compared to the Born and
Rytov approximations by computing solutions for the scat-
tered magnetic field H(r) external to the scatterer. In our
first example (Figure 3), the source is situated at Tx = (r, 6,
@) = (10, 90°, —90°) and the receiver at Rx = (10, 45°,
$°). Initially, we begin with a small sphere (R = | m), as the
Born approximation is expected to be most accurate for
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Fig. 3. Comparison of the y component amplitude of the scat-

tered magnetic field for varying conductivity of 2 small sphere in a
uniform (0.1 §/m) background. The frequency of excitation is 100 Hz
and the sphere radius is } m. The Tx and Rx are fixed at Tx = {r, 8,
¢) = (10, 90°, —90°) and Rx = (r, §, ¢) = (10, 45°, 0°). All four
new approximations provide excellent estimates of the response
over the entire range of conductivity contrast.

small scatterers. The receiver Rx is in the far field relative to
the sphere radius and the primary fields are relatively
uniform over the scatterer. In addition, we use a moderately
low frequency, f = 100 Hz, primarily to examine the ability
of the static estimator (SLN) to improve the approximations
of the amplitude of the scattered fields. Figure 3 compares
the true solution for H, to the various approximations as a
function of the conductivity ratio between the sphere and the
background. At this receiver location, H, is the dominant
scattered magnetic field component, and at this frequency it
is essentially in-phase with the primary field. The back-
ground conductivity is kept constant at 0.1 $/m, while the
conductivity of the scatterer is varied.

The SLN static approximation provides very good esti-
mates of the true solution over S orders of magnitude of
conductivity contrast. At this frequency, the scattered field
amplitude and the amplitudes of the scattered field approx-
imations are small compared to the background. Thus the
Rytov extension to the SLN (the SLNR approximation,
equation (46)) provides no additional correction, and the
Rytov approximation is almost identical to the Born approx-
imation {equation (45)}. At this frequency, the full LN and
SLN approximations are virtually identical as there are no
phase variations within the scatterer relative to the back-
ground field. Since the LN and SLN approximations are
identical, the SLNR and LNR approximations must neces-
sarily be equivalent.

The Born and Rytov approximations, on the other hand,
are inaccurate except when the conductivity contrast § is
extremely small. In particular, both approximations very
quickly overestimate the magnitude of the scattered field
when the sphere is more conducting than the host. Because
the scattering currents induced inside the scatterer are

Fig. 2. The generic model with coordinate system. The sphere is
centered at the origin.

repr d by (AoE,) for the Born approximation, the
scattered magnetic field very quickly becomes proportional
to sphere’s conductivity. In the exact solution, on the other
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Fig. 4. The amplitude of the scattered magnetic field compo-
nents (H,, H,) plotted as a function of conductivity ratio. The
sphere radius is increased to 30 m. The transmitter and receiver
locations are Tx = {(r, 8. ¢) = (100, 90°, —90°) and Rx = (r. 6,
&) = (60, 45°, 90°). For this sphere size and frequency (100 Hz)
there 1s virtually no difference between the full estimator {(LN) and
the static estimator (SLN), which give good results for H, when
o /o, < 20 and excellent results for A, at all contrasts.

hand, the internal electric field eventually saturates and the
scattered magnetic field does not increase linearly with Ao
For a resistive sphere, under the Born approximation, the
internal scattering currents are soon approximated by
{—o0,Ep) as o— 0, and the magnetic field amplitude asymp-
totes to a value that underestimates the true response.

The second example is a much larger sphere with 30 m
radius. The sphere size is now comparable to the distance to
the receiver as well as the transmitter. Measured in sphere
radii, the transmitter is closer to the sphere (slightly more
than 3 radii) and the receiver is also closer (only 2 radii) than
in the previous example. There is now a significant scattered
H, field as well as H . In Figure 4a we plot the amplitude of
H, as given by the true solution (sphere), and the various
approximations.

The Born approximation increases in amplitude linearly
with conductivity contrast. Because of the corresponding
exponential rise in amplitude in the Rytov approximation
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(equation (45)), the total field estimate approaches a vanish-
ing value for high values of conductivity contrast and hence
the scattered field saturates to the negative of the back-
ground field (see equations (40) and (45)). The Born and
Rytov approximations are only accurate when the conduc-
tivity contrast § is very small. At this relatively low fre-
quency. the amplitudes of the scattered fields are still quite
small compared to the background, and therefore there is
littte difference between the LN and SLN approximations
and their Rytov extensions. The frequency is still low
enough that there is no appreciable phase difference between
the total field and the background field and thus the LN and
SLN approximations are equivalent. All four new approxi-
mations match the scattered field closely for both conducting
and resistive spheres. There is a small but consistent error in
the approximations for conductivity ratios around 100. The
discrepancy is much larger in the H, component (Figure 4b)
for which there is a sharp drop in the true field amplitude for
ratios around 100. The scattered A, amplitude has a mini-
mum just outside the sphere (coinciding with a peak in the
scattered H. amplitude) indicating a rotation of the vector
field. The amplitude of the vector scattered field (not shown
here) has a slight minimum for a ratio about 80 and then
begins to rise again for larger ratios. These characteristics
are not predicted by the any of the approximations. In
addition, the new approximations underestimate the high
conductivity asymptote for the H, component.

As the sphere size becomes larger or frequencies become
higher, all field components of the secondary field H, be-
come significant, as does the quadrature scattered field. To
study the approximations, we use a normalized residual
between the true solution and a given approximation defined
as

B — Hopnerel
o = o Tupherel

(56)
iiHsphcre‘x
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Fig. 5. The residual error norm & = [ — Hppeccll/[Hypnerell

plotted as a function of sphere radius. The sphere and background
conductivities are fixed at 1.0 and 0.1 S/m, respectively, the fre-
quency is 100 Hz, and the Rx and Tx locations are as in Figure 4.
The new estimators have ervors less than 0.1% for small spheres,
rising to between 15% and 25% for a 58 m radius sphere.



where ¥ represents the estimated scattered magnetic field
vector and |jx|| is the Euclidean norm. In Figure 5 we
compare the approximations for a fixed frequency, back-
ground, and sphere conductivity as the sphere radius is
varied. The Rx and Tx positions are as in the second
example. The new approximations provide extremely good
estimates for small scatterers (error less than 0.1%), but as
the sphere radius becomes larger the approximations be-
come somewhat poorer. The LN, SLNR, and LNR approx-
imations estimate the scattered field most accurately, giving
an error of about 20% when the observation point is just
outside the sphere {the sphere radius is 58 m). It should be
noted that as the sphere size increases, the Rx position
becomes progressively closer to the sphere, and thus part of
the errors in the new approximations is caused by the
increasing complexity of the scattered fields as the scatterer
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boundary is approached. The Born and Rytov approxima-
tions (not shown) overshoot the amplitude by a factor of 3,
as was seen in earlier examples for this conductivity ratio
(10).

Figure 6 examines the residual norm for the model used in
Figure 4 for conductivity ratios covering five orders of
magnitude. We see that the new estimators provide excep-
tionally good estimates for a resistive inclusion, with the
localized nonlinear (LN) approximation providing a slightly
better estimate (1% error) than the SLNR {1.5% error) and
SLN and LNR estimates (around 3% error). We have found
that for resistive scatterers, the LN estimator is the best
approximation, while its Rytov extension (LNR) is the
worst. For a conducting inclusion the approximations pro-
vide good estimates for all three components up 1o contrast
ratios around 20 where errors exceed 20%. Due to phase
rotation of the scattered field, the LN is slightly better than
the SLN, while the SLNR and LN are essentially equiva-
lent. As the contrast ratio becomes higher, we found that the
approximations significantly underestimate the magnitude
and phase of the scattered H,, and the norm thus ap-
proaches unity., ’

102
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Fig. 6. The residual norm plotied as a function of conductivity
ratio for a sphere of radius 30 m and a frequency of 100 Hz. The
receiver and transmitter are as in Figure 4. Errors are less than 10%
for conductivity ratios less than 10.

frequency (Hz)

Fig. 7. The ratio of estimated to true amplitude of scattered
H, for the Born, SLN, and LN plotted as a function of frequency
for the model of Figure 4. The new estumators are valid over a
wide frequency range but become too large at high frequency. The
LN provides a good estimate for this model well into the kilohertz
range.

As frequency increases, the physics of the scattering
changes as the effect of charges becomes less significant and
induction becomes more significant. In Figures 7 and 8 we
examine the accuracy of the approximations as a function of
frequency. The conductivity ratio is fixed at 10, as in the
previous example, and the sphere radius is 30 m, First, we
examine just the SLN and LN approximations. Figure 7
compares the amplitude of the estimated solution to that of
the true solution by plotting their ratio as function of
frequency. The amplitude is given very accurately by both
approximations for frequencies up to 300 Hz. Thereafter the
LN approximation provides a better estimate of amplitude,

-101
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-20
251

-301

H, phase difference, degrees

-354

40 phase error = sphere - estimator

-45

107! 102 10° 104

frequency (Hz)

— .
10° 10!

Fig. 8. The difference between the phase of the scattered H,
component for the true and the estimated solution as a function of
frequency for the model in Figure 4. The LN estimator provides a
phase improvement of up to 15° over the Born and SLN approxi-
mation, but the phase error becomes substantial at higher frequen-
cies.



1768

Hz phase function (reai), nepers

10° 1ot 10% 108
frequency (Hz)

10° 10?2

Hz phase function (Imaginary), radians

100 10t 10° 10
frequency (Hz)

10’ 102

Fig. 9. The negative of the real and imaginary parts of the exact
phase function (1), given by equation (41), and its estimates for the
model of Figure 4. The new extended Rytov estimates (SLNR and
LNR}) are very accurate for frequencies up to 2000 Hz but eventually
overestimate the magnitude of both the real and imaginary parts of
the phase function. The magnitude of estimated total field is there-
fore 100 small and the phase too large.

until at 10 kHz it is in error by about 50%. In Figure 8, the
phase error in the approximation of H_ is plotted as a
function of frequency. The phase error is small for the Born
and SLN estimators for frequencies up to 300 Hz but
increases quickly thereafter as induction begins to contribute
to the response. The scattered field for the static localized
nonlinear (SLLN) approximation does not correct the phase
of the background field. The localized nonlinear (LN) ap-
proximation, on the other hand, provides a phase correction
of up to 15° at high frequencies, resulting in a total phase
error of 27° at 10 kHz. It correctly predicts the phase in this
example up to 300 Hz.

In general, at low frequencies, the new approximations are
quite accurate and considerably improve both amplitude and
phase over the Born approximation. As the frequency in-
creases, their accuracies differ, with the LN approximation
providing both a better estimate of amplitude and phase than
the SLLN approximation. Eventually at high frequencies, the
amplitude of the LN approximation becomes too large and
the phase correction not sufficient, thus requiring the addi-
tional corrections anticipated by the Rytov extension.
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At high frequencies, the true total field becomes small
compared to the background field and thus the scattered field
approaches the negative of the background. It is therefore
appropriate, at such frequencies, to compare the accuracy of
the approximations to the total field rather than scattered
field as in the earlier figures. Since the background field
decreases rapidly in amplitude as the frequency increases,
we plot ratio of total field to background field. In this case, it
is useful to compare the phase function estimates (equation
(41)) of the various Rytov approximations to the logarithm of
the exact ratio via equations {40) and (42).

In Figure 9, estimates of the total field for the previous
model are plotted using the phase functions for the static
localized nonlinear Rytov (SLNR), localized nonlinear
Rytov (LNRY}, and the Rytov approximations up to frequen-
cies of 1 MHz. The negatives of both the real and imaginary
parts of the phase functions are plotted in Figure 9. The real
part of the phase function is the logarithm of the amplitude of
the ratio of the total field to the background field. The exact
total field becomes small compared to the background field
as the frequency increases. The Rytov approximation over-
estimates this decay. so that the Rytov estimate of the total
field quickly vanishes with respect to the background field.
The LNR and SLNR provide accurate estimates of the total
field amplitude for frequencies up to several kilohertz. For
two decades higher, they slightly underestimate the decay
rate, and then beyond 100 kHz they overestimate the total
field which decays to zero. The imaginary part of the phase
function is the phase of the total field compared to the
background. The Rytov approximation overestimates this
phase rotation at all frequencies, while the two new Rytov
approximations (SLNR and LNR}j provide accurate esti-
mates for frequencies up to several kilohertz. Thereafter, the
SLNR provides the best estimate of the phase rotation until
the imaginary part of the exact phase function asymptotes
after 10 kHz.

The phase error of the estimates is also a function of the
conductivity ratio. In Figure 10, we look more closely at the
phase of the scattered H, field component for both resistive

LNR
»20§£

Born, SLN

phase, degrees
(resistive sphere)

SLNR

130

phase, degrees
(conductive sphere)

b1zo

110

100
1000

conductivity ratio

Fig. 10. Phase of the scattered H, component as a function of
conductivity ratio at 1000 Hz (note the 180° phase change between
resistive and conductive inclusions). The LNR approximation esti-
mates the phase to within a few degrees for positive conductivity
contrasts and provides a further improvernent in phase from the LN,
For resistive inclusions, the LN estimator is most accurate.
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Froquency =100  Background Resistivity = 10.0  Estimator:  Extended

Fig. 11.

Tr-Rx separation = 200.0  Sphere Regletivity = 1.0
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Plan view (in the x-y plane) of the contoured error residual for the scattered magnetic field expressed as

a percent error for the localized nonlinear estimator when the sphere is centered in the z = 35 m plane. The sphere has
a radius of 30 m and conductivity of 1 S/m, the background conductivity is 0.1 S/m. and the frequency is 100 Hz. The
Tx is below the white cross. while the receivers are below the black cross. Both Tx and Rx are in the z = 0 plane with
the Tx moment perpendicular to the contour plane. Errors are generally less than 20 but are highest in the vicinity of

the transmitter.

and conductive inclusions at an excitation frequency of 1
kHz within the range of accuracy of the Rytov extensions,
SLNR and LNR as demonstrated in Figure 9. The LN
approximation provides extremely accurate phase estimates
for resistive scatterers (conductivity ratios less than 1), while
the phase of the SLN approximation becomes significantly in
error for large ratios. The Rytov and the SLNR approxima-
tions underestimate the phase anomaly by about 5°, while
the LNR approximation overestimates the phase anomaly by
about 5°. The phase anomaly is relatively small for resistive
inclusions, and the misfit is never large. The LN approxima-
tion provides the best estimates. For conducting spheres,
however, the phase anomaly can become substantial. As the
sphere becomes more conducting the phase of the scattered
field deviates from that of the background by more than 25°
for conductivity ratios larger than 30. The localized nonlin-
ear approximation tracks this phase anomaly initially but
underestimates the large-ratio asymptote by around 10°. The

SLMNR provides a better estimate than the SLN estimate,
while the LNR approximation tracks the phase anomaly best
for large ratios of conductivity, being in error by less than 5°.

The accuracy of the approximations is not only a function
of conductivity ratio, frequency, and size of the scatterer but
is also a function of the geometry of the exciting field and the
location of the receiver. In Figure 11 we plot the residual
norm for the localized nonlinear approximation as the origin
of a 30-m-radius sphere is varied for fixed transmitter and
receiver locations, conductivity, and frequency. The center
of the spherical scatterer is moved within the plane Z = 35
m. The transmitter is located below the white cross at Z = 0
and is oriented normal to the plane. Thus the spherical
scatterers come within 5 m of the Tx-Rx plane. The receiver
location is 200 m away from the transmitter, below the black
cross. The frequency of excitation is 100 Hz so that the LN
approximation is sufficient. The LN approximation is very
good over most of the region except when the sphere is
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Fraquency =100  Baciground Reslstivity = 10.0  Estimator:  Extended

Tx-Rx separation = 200.0  Sphare Resistivity = 1.0
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Fig. 12. Section view (in the y-z plane) of the contoured error residual for the scattered magnetic field expressed
as a percent error for localized nonlinear estimator when the sphere is centered in the x = 35 m plane. The model is
the same as in Figure 11, The Tx is behind the white cross while the receivers are behind the black cross. Both Tx and
Rx are in the x = 0 plane. The error is highest along the axis of the transmitter.

located above the transmitter, where a maximum error of
45% is obtained. Figure 12 shows a section view of the same
model, with the plane of the sphere centers at X = 35 m.
Again, the estimator is very good except when the source is
near the scatterer and is poorest when the scatterer is near
the axis of the source. The misfit of the approximations is
associated, at least partly, with the geometry of the scat-
terer. This is directly related to the geometry of the total
internal electric field which we examine more closely in
Appendix C. Also, in Appendix C, we include an example of
the external scattered electric field estimates from the new
approximations.

Discussion AND CONCLUSIONS

In electromagnetic scattering from a conductive inclusion,
the Born and Rytov approximations give accurate estimates
of the scattered field only when the contrasts in physical
property and scatterer size are small. For example, at 100 Hz

the Born approximation is accurate to within 20% for a t-m
sphere located 10 m from both the source and receiver for
conductivity contrasts of 1:1.5. The error rises rapidly to
400% at a conductivity contrast of 1:10. The static localized
nonlinear (SLLN) approximation provides a significantly im-
proved estimate of the amplitudes of the scattered fields for
a wide range of conductivity contrasts, scatterer size and
exciting frequency (for the 1-m sphere, the error is only 0.5%
for a contrast of 1:10). However, as with the traditional Born
approximation, the SLN approximation does not provide a
good estimate of the phase of the scattered field. The
localized nonlinear approximation provides some phase cor-
rection and an additional amplitude correction to extend the
range of application. These corrections have reduced accu-
racy for particular source-scatterer geometries, especially on
the axis of the dipolar source, and are less applicable at high
frequencies with large scatterers. The localized nonlinear
Rytov approximation provides mainly additional phase cor-



HABASHY ET AL.: BEYOND THE BORN AND RYTOV APPROXIMATIONS

rections and some amplitude correction to the simpler local-
ized nonlinear approximation at higher frequencies for larger
scatterers and higher positive conductivity cootrasts. In
some cases, particularly at high frequencies, the static
localized nonlinear Rytov approximation is superior to the
full Jocalized nonlinear Rytov approximation which is con-
trary to what one would expect. Detailed studies, such as
those described here, should be done to select the most
appropriate approximation for specific applications.

To use these approximations for forward modeling, it is
first necessary to derive the depolarization tensor for ele-
mentary scatterers more suitable as building blocks for
complex geometrics than spheres. The formulation outlined
in this paper is presently being generalized to geometries
such as rectangular parallelepiped and rectangular cylinders.
Investigation of the use of the approximation in multiple
scattering interactions must also be done prior to building a
forward modeling tool.

The new approximations also open the possibility of fast
nonlinear inversion. These new approximations can also be
generalized to more complex background media, where they
can significantly improve the performance of iterative inver-
sion algorithms based on the distorted-wave Born and Rytov
approximations.

APPENDIX A: DERIVATION OF THE LOCALIZED
NONLINEAR APPROXIMATION OF THE INTERNAL
ELECTRIC FIELD FOR A SPHERICAL SCATTERER

The new approximations depend on the geometry of the
scatterer. In this appendix we derive detailed expressions for
the internal electric field inside a homogeneous spherical
scatterer in a uniform whole space. The technique used here
is specific to a spherical geometry.

For r € V| the internal electric field is approximated by
equation (31):

E(r) ~ T(r) - Ey(r), (A1)
where from equation (30),
- {: Ao _ }"‘
T()={I+—L(r) {A2)
Tp
L(r) = —[kZ 1 + ¥V1fir), (A3)
fir) = f dr’ g(r, r'). (A4)
v,

To obtain the depolarization tensor, we begin by expand-
ing the scalar Green's function in terms of spherical Bessel
functions and Hankel functions of the first kind {Morse and
Feshbach, 1953]

ikp o
M= S 2n+1
gir, r') m @2n+1)

n=0
" (n— m)!
: E Xm ——— PJ(cos 8)P](cos 8')
— (n + m)!
m=0
JakkrhVkpry,  rz
. cos Y <
cos [m{¢ — ¢')] {j,,(kbr)h,{;”(k,,r’), r=p (A9
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where

L,
Xm=1,

Setting the origin at the center of the sphere

m=290
m # 0.

Stry = it | 1§ ki) f S otk
0

; G a2 "
+ jolkyr) dr' r'hy (kyr')
4
sin {(kyr}

Ko (A6)

1
== -1+ ¢{kpa)
b

where the zero-order spherical functions are given by

iz

i) = ~i =, jolz) = sin </z (A7)
and
Wlkya) = (1 — ikya)e™ e, (A8)
Due to the spherical symmetry of the sphere
Vftr) = fi(r)t (A9)

where f7(r) is the derivative of f(r) with respect to r. Thus
—L(r) = k2 f0)] + VYfir)

(] ;
} | ¢ g I
r

=kif 0 + | f70) L

= h()] + p(r)ei. (A10)

Evaluating the derivatives of f{r) in equation (A10), we
have

5 fir) Y(kpa)
h(r) = ki fle) +——= =1 fk—i
. cos (kpr)  sin (kpr)
. {:sm {kpr) + o (k;,r)2 }. (Alla}
f(r) Ylkya)
pe) = frir) == =
r kpr
. . cos (kpr) sin (kpr)
. [sm (kor) + 3 T - (kbr)z } (Allb)

The tow-frequency asymptotes, when [k,af <& 1, are
given by

h(r) =~ ~1+ L (kya)* = & (k)% (Al2a)
per) = = (kyr). (A12b)

In the DC limit,
Aln)— -1, (Al3a)
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plr)— 0, (Al13b)
and therefore from equation {A10),
iry=11, (Al4)
and
Fo(r) = (1 + ! A—U) _17 = (——’—a"—)1 (A15)
3o, o+ 20,

Thus, from (A1), the internal electric field under the SLN
approximation is given by

3oy
o+ 20,

E(r) = ( )E,,(r). rev,. (A16)

To obtain a closed form expression for the internal field for
all frequencies, we invert (A1) for the spherical scatterer

- - Ao .
Eo(r) =T "Yr)-E(r) = |1 - . L{r) -E(r)
b

[ Ag Ag
= (1 =27 h(r))E(r) ~ 27 p(r)ét - Eir)
. T / Ty
(ALT)

and therefore

. Ao \ Ao
P-Eur) = (1 -— h(r))i— - E(r) - — p(r)f - E(r)
\ T Ty

Aa
= (1 ———s(r))f-E(r). (A18)
oy J

where

s(r) = h(r) + p(r). (A19)

Substituting f - E(r) from equation (A18) in equation (A17)
) Ao \
Ep(r) = |1 — — A(r)} |E(r)
Ty /

Ao ( P+ Ep(r) (A20)
— — - TI.

o PN T T Bolopsin)]
and thus the internal electric field can be expressed explicitly
in terms of the background field and functions which are
dependent on geometry, frequency, and the conductivity of
the background medium,

Ao V7l
E(r)=[1-— h(r)) Ey(r)
ap
Ao i Ep(r) A v 21
o P T T Gt Ff TEYs (A

For most geophysical applications, the secondary or total
fields outside the scatterer are the chief interest. The precise
formulations used for calculating the fields outside the scat-
terer are derived in Appendix B.
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APPENDIX B: DERIVATION OF THE EXTERNAL SCATTERED
FIELDS FOR A SPHERICAL SCATTERER UNDER
THE L.OCALIZED NONLINEAR APPROXIMATION

In this appendix we derive explicit expressions for the
external magnetic and electric scattered fields under the
localized nonlinear approximation for a spherical scatterer.
The expressions are suitable for rapid numerical calculation.

Magnetic Field

From equation (35), the scattered magnetic field is given
by

H,(r) = Ao J dr' [Vg(r, )] x E(r'). (Bl
v

Its component along @ is given by

Hir) = Ao J dr' {—Vg(r, r') - [d x E(r)]}

v,
= Ao j dr' F (¢, r'), r& Vv, (B2)
v,

where, from equation (48) for the internal electric field, we
have

Ao -
i % E(r') ~ (1 -— h(r')) aXEy(r')
Ty
Ao ) B Ey(r) B3
+—pr') ————— x|
o, ) 1 - (Aa/oy)s(r”) uxr (B3)

We consider an infinitesimal magnetic dipole source ori-
ented along z and located at ry. The background electric field
is given by

Ey(r') = mzx V'g(r’, ry) (B4)
where m 1s the source moment. Since
6 x{zx Vg(r', roh=2{a- Vo', r,)}

—(&-@)V'g(r’, rg) (BS)
and

i Ep(t’) =mi' - {2 x V'g(r’, r,)}

=m# x 1) Vo', ry)
(B6)

then

[ Aa V7!
F(r,r')= m(l -— h(r’))
oy )

: {(i - @{Vg(r, v} [V'g(r’, rJ)]

~{z-Vg(r, v'}][a - V'g(r’, r,)]
-1
[zx#)
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Vg, rll(a x &) - Vglr, r’)]}

= mBy(r'}{(z - 0){Vg(r, r')]
[V, rd] - [&: Volr, £)][a- ¥glr', vyl
+ By x ) Viglr', rllta x ) - Vo(r, v}
(B7)
For the Born approximation
Bo(r') =1,

By(r')=10 (B8}

while for the static localized nonlinear (SLN) approximation

( Ag)il
Byr'y=|1+—] , Byr)=0 (B9)
3oy,

and for the localized nonlinear (LN) approximation

( Ao V!
By(r')=[1~— h(r’)) .
\ Tp

(B10)

Ao Ao -t
By(r)=—pr")1 - —s(r’)
s Ty /

where A(r'), p(r'), and s(r’) are calculated from equation
(50).

As an example, consider @ = %, the origin at ry, the
transmitter at rg, the receiver at r, and the probed point
within the scatterer at r’. Then

dg(r, ') 9g(r’, ry)

Fr,rgr') = mBo(jr' — 'ol){ ;
ox ax

ag(r.x’) ag(r’, ry)  By(jr’ —ryf)
+ +

ay ay’ Ie* — ol
3g(r’, ry) ag(r’, ry)
'[(X"Xo) — (¥ ~yo) -
dy ox
_aglr, ©’)
. [(X’ —xg) —— = (¥ — ¥o!
y
dgir, r’) B m ,
P = (47)2 Bo(ir' — rgl)

pikelr’ =7l jiker — ]
e e P
<1 = ikple’ = e[ - ikylr’ - xg]
: [(I’ —a)x = x)+ (= I — )

By{|r’ —rl)

|r, r ‘2 - x0(y" =)
0

= (" = yolx' — x)I(x" = xp)
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Y =y = (= )X —xs)]}- (B1Y)

Electric Field

The estimated total or scattered electric field outside the
sphere are computed by numerically evaluating the volume
integral of equation (7) with the internal electric field approx-
imated by equation (48). The scattered electric field is given
by

dr' G(r, r') - E{r),

E((r) = iopobe J' (B12)

v,

where the dyadic Green’s function is given by equation (5).
The contribution to the ith element of the vector integrand of
{B12) from the derivative portion of the dyadic Green’s
function is

3
{VV - [glr, E@E)Y = > Kylr, PIEL),
i=1

(B13)
where
a2g(r, ¥’}

Ky(r, e') =
e 1) ax;0x;

g(r, r') ) i
= _lr——‘r—"—i {[l = fkylr — 1 HSU
(x; ~xp) {x;—xp)

fr—r’|

Ir -1

(3 = 3ikylr — '] — kil — r'rl]}. (B14)

The elements of the dyadic Green’s function are simply

Gy(r, r') = g(r, 1')8; + —5 Ky(r, r'). (B15)

1
kg

To determine the ith component of the external electric
field at a field point r, a numerical integration over the
volume of the scatterer is performed, giving

3
E{r)=iopsdo J‘ dr’ E Gr, r’)Ej(r’)
v, i=1

(B16)

where the estimated internal electric field £ ;(r') is calculated
either from equation (48) under the LN approximation or
from equation (55) under the SLN approximation.

AprpENDIX C: ELECTRIC FIELDS OF A SPHERICAL
SCATTERER—NUMERICAL RESULTS

Internal Electric Field

To better understand the approximations of the fields, we
examine in detail the field that is crucial to all the approxi-
mations: the total internal electric field. We begin with a
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Fig. C1. The internal electric field as a function of radial posi-

tion from the sphere center: Tx = (r, 8, ¢} = (100, 90°, —45°) and
Rx = (8, ) = (45°, 45°). The spbere center is at (0,0,0).

model for which the approximations give moderate accu-
racy. The radius of the sphere is fairly large (30 m), the
frequency is moderate (100 Hz), the conductivity contrast is
10:1 (o og = 1:0.1 S/m). The sphere is located at the
origin, the Tx is located at ¢ = 45° and at a distance of 100
m away from the sphere center. The transmitter is pointing
along the z axis.

Figure C1 compares the in-phase electric field as a func-
tion of radial distance from the sphere center along a profile
with a fixed 8 and ¢. The true solution for the total field,
represented in spherical components, is compared to that of
the localized nonlinear (LN) approximation. The radial
component (e,F) closely matches the true solution for all
radial locations, while the # component (eaé) matches near
the sphere center but diverges from the true solution as the
surface of the sphere is approached. The ¢ component
(ed,é), although small, has the wrong sign (i.e., wrong
direction).

For 8 = 30°, Figure C2 examines the residual norm for the
total internal field as a function of both radius and azimuthal
angle. The residual error is small at the center but increases
toward the surface of the sphere. The approximations are
more accurate for positions on the near side of sphere
relative to the Tx (¢ = [—15°, —75°]) than on the far side (¢
= [0°, 75°).

In general, the approximations do not determine accu-
rately those components of the internal electrical field which
become tangential to the surface of the sphere as the surface
of the sphere is approached, i.e., the ¢ and ¢ components.
On the other hand, the radial component, which is normal to
the sphere surface, is always determined relatively accu-
rately.

The preceding results give some insight into the compar-
isons made earlier on the external electromagnetic field
components. The external scattered magnetic field is deter-
mined by a volume integration of the total internal field over
V. Our studies have shown that the main contribution to
this volume integration is mainly from internal points which
are close to the surface of the sphere. In addition, the
gradients in the #and ¢ components increase with the size of
the sphere. The poor approximation of the 8 and ¢ compo-
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Fig. C2. The residua) norm for the internal electric field as a
function of radial position and azimuthal angle for a fixed theta angle
(8 =309,

nents of the internal field away from the sphere center
combined with the large gradients of these components for
larger spheres, is responsible for the misfit of the external
scattered magnetic fields.
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Fig. C3. The scattered electric fields external to the sphere. The

model and Tx and Rx locations are the same as in Figure 4.
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The orientation and location of the transmitter determine
the relative importance of the tangential and normal compo-
nents in the determination of the external scattered fields.
For example, when the dipole axis of the source intersects
the scatterer, the tangential components are relatively larger
than when the center of the scatterer is on an axis perpen-
dicular to the axis of the source. For a resistive inclusion, the
internal field is only slightly larger than the background field.
However, for a conductive inclusion the internal field is
often significantly smaller than the external field. Thus, for
the resistive inclusion the variation of the tangential compo-
nents from the center to outside the scatterer is less than for
the conducting case. As the frequency increases or the
sphere becomes larger, gradients in the 8 and ¢ components
increase due to inductive loss and phase rotation effects,
thereby increasing the inaccuracy of the internal estimates.

External Electric Field

For locations external to the sphere the scattered electric
field E, is calculated by volume integration over the support
of O by the use of equations (B16) and (48).

As an example, we calculate E, for the Rx position and the
model used in Figure 4. At this Rx location, there is only one
component of the scattered field, £, . In Figure C3 we plot
the true solution and the three approximations, Born, LN,
and SLN. The LN and SLN approximations to the ampli-
tude are good to within 1.5% for conductivity ratios up to
about 100, beyond which the estimated amplitude diverges
from its true value. The LN estimator tracks the phase
reasonably well to within 2° up to conductivity ratios of
about 25 but fails to estimate the true phase for more
conductive spheres.
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