2011 VTEM Inversion Studies LAWN HILL BLOCK 2

OCTOBER 2011 Petros Eikon Inc.

OCTOBER 2011

PETROSEIKON

Lawn Hill Block 2

Channel 6 Hz displayed (.167 msec).

OCTOBER 2011

PETROSEIKON

Lawn Hill Block 2

Bird Height.

OCTOBER 2011

PETROSEIKON

m

Block 2: Hz Ch7 contour from a grid with grid cells which are 50m in NW-SE direction and 500m orthogonally.

PETROSEIKON

Block 2: Hz Ch14 contour from a grid with grid cells which are 50m in NW-SE direction and 500m orthogonally.

PETROSEIKON

Block 2: Hz Ch22 contour from a grid with grid cells which are 50m in NW-SE direction and 500m orthogonally.

PETROSEIKON

Block 2: Hz Ch28 contour from a grid with grid cells which are 50m in NW-SE direction and 500m orthogonally.

PETROSEIKON

Block 2: Decay rate (exponential) Ch3-Ch9 in msec.

PETROSEIKON

Lawn Hill Block 2

Block 2: Decay rate (exponential) Ch7-Ch13 in msec.

OCTOBER 2011

PETROSEIKON

Block 2: Decay rate (exponential) Ch13-Ch19 in msec.

PETROSEIKON

Lawn Hill Block 2

Block 2: Decay rate (exponential) Ch21-Ch27 in msec.

OCTOBER 2011

PETROSEIKON

Block 2: Decay rate (exponential) Ch26-Ch32 in msec.

PETROSEIKON

Horizontal:Vertical 1:25

L10010

	2.5 2.3	300
	2.1	
	1.9	
	1.7	
	1.6	
	1.4	
	1.2	
	1.0	10
	0.8	
	0.6	
	0.4	
	0.3	
	0.1	1
	-0.1	-
	-0.3	0.5
Ohm∙m(log)		

Ch6

Ch25

Horizontal:Vertical 1:25

L10020

GPSZ

OCTOBER 2011

PETROSEIKON

	0.5
	2.5
	2.3
	2.1
	1.9
	1.7
	1.6
	1.4
	12
	1.0
	1.0
	0.8
	0.6
	0.4
	0.3
	0.1
	-0.1
	-0.3
Ohm·m(loa)

Ch6

Ch25

L10030 GPSZ data synthetic easting

OCTOBER 2011

PETROSEIKON

Horizontal:Vertical 1:25

	2.5
	2.3
	2.1
	1.9
	17
	1.6
	1.0
	1.4
	1.Z
	1.0
	0.8
	0.6
	0.4
	0.3
	0.1
	-0.1
	-0.3
Ohm·m(log

Horizontal:Vertical 1:25

Horizontal:Vertical 1:25

Horizontal:Vertical 1:25

Horizontal:Vertical 1:25

L10090

OCTOBER 2011

PETROSEIKON

Horizontal:Vertical 1:25

	2.5
	2.3
	2.1
	1.9
	1.7
	1.6
	1.4
	1.2
	1.0
	0.8
	0.6
	0.4
	0.3
	0.1
	-0.1
	-0.3
Ohm·m(log)

Ch6

Horizontal:Vertical 1:25

T91030

Ch6

Ch25

PETROSEIKON

OCTOBER 2011

PETROSEIKON

OCTOBER 2011

PETROSEIKON

OCTOBER 2011

PETROSEIKON

OCTOBER 2011

View from the North in Altitude relative to ground level

OCTOBER 2011

PETROSEIKON

View from the West in Altitude relative to ground level

OCTOBER 2011

PETROSEIKON

Block 2 TEM Inversions – Deliverables

1) EMIGMA database where the inversions are attached to the survey data. EMIGMA allows cross-sectional viewing and well as 3D volume viewing with slices. EMIGMA allows export of cross-sectional inversion data as well as depth slices.

/2011/TEM Inversions/EMIGMA database

2) Depth Slices are provided in a QCTool format with a depth slice at each 10m depth.

/2011/TEM Inversions/Depth Slices

OCTOBER 2011

PETROSEIKON