
3 Examples of PetRos EiKon  
research as pertains to the use  
of measured TMI derivatives 
 

Example 1:  How should gradients be processed? 

 

Example 2:  When should gradients be collected? 

 

Example 3:  Will measured gradients increase my data resolution? 

 R.W. Groom, PhD 



3 Sensor Mag Processing: 
Derivation of TMI Gradients 
 

Algorithms for de-rotating  

2 horizontally offset magnetometers  

with 1 vertically offset magnetometer 

 



  3 TMI measurements at each station in the local 

frame originating at (Px,Py,Pz) 

Sensors 
dv 

dw 

(Px,Py,Pz) (starboard)  

(port) 

(lower) 

In this configuration, the 3 sensors are set on a  rigid frame which varies its 

orientation continuously during flight. The problem is how to obtain gradients 

in some useful and consistent coordinate system. 

 

Locally ( ie. at each position), the sensors measure derivatives in somewhat 

random orientations. Unless, the gradients can be de-rotated to a consistent 

frame then they have limited usefulness. 

 



  Grid system vs. Local 

 i.e. pitch, roll, heading 

Normally gradient vectors can be orientated easily from a local frame to a more  

general geographic, geomagnetic or grid system if the orientation of the rigid 

system and the 3 gradient vectors are known. Mathematically,  

(x,y,z) Grid or Geographic 
(u,v,w) local 

The orientation is represented mathematically by: 



three equations in four unknowns                 

Local Transverse Gradient 

Local Vertical Gradient 

Two of the local derivatives can be derived via the following equations: 

 At each data point, we wish to recover the 3 gradients in the 

grid system. i.e., M/ x, M/ y, and M/ z. However, 

!!?? 



In-Line Derivative 

 The derivative in the direction of flight (in-line) has no direct 

measurement for this configuration. Normally, it is estimated by the  

difference in 2 in-line average measurements, i.e. 
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Where,                    are the average M at each data point. 

However, using this estimate of the in-line derivative with the other local 

derivatives to de-rotate the gradients as if in a fixed rigid system presents 

problems. As will be seen later. 

2,1 MM



fourth equation ! 

  Previous observation at (Px’,Py’,Pz’) 

Flight Path 

 

Directional Derivative 

Another approach is to use the notion of a directional derivative 



Synthetic (nonphysical) Data Example 

 Simulated Flight Path  

– roll, pitch, heading, altitude variations 

– Magnetometer orientations generated semi-
randomly 

– Simulated data mathematically generated 
allowing analytic gradients for benchmarking 

•In this example, the locations of the center of the sensors vary pseudo-randomly 

along a prescribed flight path and the orientations of the 3-sensor rigid system 

are allowed to vary at each data position in a smooth but random fashion. The 

data at each sensor is generated by simulation at the location of that sensor by 

means of PetRos EiKon’s 3D Magnetic modeling functions. 
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Transverse vs. Easting

 Flight Path North 

For the simulation, the flight path is generally  

North and here we show the simulated transverse 

 “measured” derivative (blue) against the  

de-rotated derivative (red) 
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Easting vs. Analytic

Here the derived derivatives from the de-rotation 

are shown against the “true” derivatives in the grid 

 east direction.  



Synthetic (simulated) data example with true flight 
and orientation information 

 Single survey line (LINE10) decimated to 
approximately 620 stations 

 Simulated data is generated on three profiles 
which follow the trajectories of the three 
sensors based on given flight path and 
orientation information 

 > (x,y,z), pitch, roll, heading are from  
 real data 

For this example, we utilize actual data locations and sensor 

orientations but use synthetic data to check processing technique 



Magnetic prism model 

 N 

Here we show the synthetic model and the actual flight path with elevation for synthesis. 
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Local Derivatives 

Here we show the “actual” measured derivatives with actual sensor  

orientations and data locations for the synthetic model. 



Note: global (x,y,z) = local (-v,u,w) 
approximately 
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The processing technique significantly  

smoothes the derivatives as well as un-mixing  

the horizontal derivatives. 



0.00 2000.00 4000.00 6000.00 8000.00

Northing

-0.80

-0.40

0.00

0.40

0.80

1.20

G
ra

d
ie

n
t

-Mv

Mu

Mw

no rotation relative to flight path

>Pitch follows flight path 

>no roll 

>heading follows flight path 



Note: global (x,y,z) = local (-v,u,w) 
approximately 
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Gradient derivation from real data 

 Measured “corrected” data  

– (LINE10, LINE70) 

 Processed to derivatives based on given 
flight path and orientation information 

  

Here we examine several effects of examining or using derivatives  

without correct processing 
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 East Derivative 

The transverse or easting derivative exhibits a negative-

positive response across 2 anomalies which are not seen in 

the  un-processed derivatives 
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 North Derivative 

The unprocessed in-line derivatives are overestimated 

in the unprocessed derivatives. These amplitudes come 

from mixing from the other derivatives. 
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Correct Positioning of Derivatives 

•In the following figures;  

 

•   Δ   -  Instantaneous collected derivative prior to processing 

•   Ο   - Simple rotation of in-line based on measured derivatives being in a fixed frame 

•     -  Alternative processing 

•   Δ   -   derivative in global ( grid ) frame – de-rotated derivatives 

•   +    -   Alternative simple rotation technique 
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Fourier Transform Processing for Derivatives 

1) All processed signals from the TMI data are generated by some transformation from 

the TMI derivatives (e.g. vertical derivatives, analytic signal, reduction-to-the pole).  

Traditionally, these derivatives are derived from Fourier transform of the TMI generally 

 by FFT techniques. 

 

2) PetRos EiKon has extended its simulation algorithms to synthesize the derivatives of the  

TMI. These derivatives are not calculated by difference techniques from data at different  

positions on the grid but rather by extending the quasi-analytic formulation to calculate 

instantaneous (by position) derivatives at each data point. This is done by extending the 

Integral Equation formulation for the components to spatial derivatives of the components. 

The extensions are available for the normal Born calculation ( magnetization parallel to  

Earth’s field) and for non-linear effects ( e.g. magnetic channelling, de-magnetization,  

interacting structures, remanent magnetization, etc). 

 

Combining these two techniques in our newest software release allows the investigation of 

many aspects of traditional TMI processing. We will examine a couple of aspects here. 



Fourier Transform Processing for Derivatives 
       - The Model 

The model for this study is a thin 

 dyke, 1km in length, striking N-S. 

 

The inclination of the Earth’s field is 

75 degrees and the declination is 20  

degrees East of North. The intensity 

is 52,500 nT. 

 

The survey area is 1575 x 1575m, 

profile lines are 25m apart and data 

points are 25m apart.  

For this example, the synthetic data is determined on a regular grid to illustrate 

varies features. 



Fourier Transform Processing for Derivatives 
      - TMI 

Here we display the simulated TMI. The interpolated 

data is on a grid which is exactly that of the simulated  

data points. 

 

Note the asymmetry in the TMI response due to the 

inclination and declination of the earth’s field.  

 

The dyke comes to within 5m of the earth’s surface and 

has a depth extent of 500m. 

TMI Simulated 



Fourier Transform Processing for Derivatives 
      - Derivatives 

Here we display the simulated derivates across a central line  

of the anomaly. And to the right, the contoured vertical gradients 

on the original data grid. 

TMI Simulated 

Simulated Vertical Gradients 



Fourier Transform Processing for Derivatives 
       - Derivatives 

This is an  extremely interesting 

Figure as it demonstrates that the 

Technique of deriving derivatives 

By FFT is more-or-less justified. 

 

For those unfamiliar with the proof 

Of such techniques, the original  

Mathematical justification for the 

Fourier transforming for the  

Derivatives is not fully proven. Also, 

Using an FFT for the Fourier 

transform is somewhat contrary  

Is proper mathematics. 

 

However, as can be seen by 

comparison of the figures. The FFT 

technique does overestimate the 

Vertical gradient and imparts 

variation which is also not actually 

in the derivative. 
Vertical Gradient by FFT Vertical Gradient by  

 Simulation 



Fourier Transform Processing for Derivatives 
       - Derivatives 

What is more interesting is the 

comparison of the in-line horizontal 

derivatives ( d/dx). 

 

Note that the in-derivatives by FFT 

are significantly underestimate. 

Compare the figures and that of the 

x-y plot of this derivatives (2 pages 

back). 

 

Note the rippling caused by the FFT 

as expected. 

In-Line Gradient by FFT In-Line Gradient by  

 Simulation 



Fourier Transform Processing for Derivatives 
       - Derivatives 

Cross-Line Gradient by FFT Cross-Line Gradient by  

 Simulation 

More disturbing is the comparison 

of the cross-line horizontal 

derivatives ( d/dy). 

 

The FFT technique overestimates 

the derivatives at the ends 

(particularly in the south). Shows 

the rippling effects caused by the 

discrete samples in the FFT and the 

taper window at the edge of the 

grid. And cannot discriminate the 

object in the center but rather 

shows the object as 2 dipole like 

structures only at the ends. 

Compare the figures and that of the 

x-y plot of this derivatives (3 pages 

back). 

 



Gridding (Interpolation)  
with Derivative Information 

Another interesting aspect of measuring gradients is the consideration that the  

derivatives may be used to enhance ( increase resolution ) of the data grids. This 

would be accomplished by using interpolation techniques which would utilize the 

measured gradients to increase the density of the interpolated output grid from the 

profile data. 

We can also investigate this 

aspects with the use of our new 

software tools.  

 

Here we will consider a new 

model beneath the previous data 

grid. The fault is reduced in size 

and another object (larger than 

the grid) is introduced which is 

sub-parallel to the data lines (i.e. 

almost parallel). 



Gridding (Interpolation)  
with Derivative Information 

For this grid, both objects 

are clearly delineated by the 

25x25m data sampling.  



Gridding (Interpolation)  
with Derivative Information 

The use of the gradients does improve the resolution both of the E-W structure but 

almost more clearly outlines the N-S structure. Data sampling in these grids are not 

preciously as in the more dense grid (previous figure). However, the gradient gridding 

very closely reproduces the high density “data”. 

TMI from 50x50m grid TMI from 50x50m grid using gradients 



Gridding (Interpolation)  
with Derivative Information 

The use of the gradients does improve the resolution both of the E-W structure but 

almost more clearly outlines the N-S structure. Data sampling in these grids are not 

preciously as in the more dense grid (previous figure). However, the gradient gridding 

very closely reproduces the high density “data”. 

TMI from 50x50m grid TMI from 50x50m grid using gradients 



3 Examples of PetRos EiKon  
research as pertains to the use  
of measured TMI derivatives 
 

Conclusions: 

 

3 pertinent examples of the use of magnetic gradients showing  

 different aspects of our research project. 

 R.W. Groom, PhD 


