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Summary 
 
For many years since the early 1980’s, inloop TEM 
inversions were not only performed but recommended by 
manufacturers of such equipment including the use of 
smooth over-parametrized models.. For various reasons, we 
have opposed this simplistic approach and have sought 
more precise techniques to provide higher resolution 
models with appropriate physical constraints. In previous 
research, we have studied the importance of correct system 
representation and how to provide more precise under-
parametrized and geologically constrained models. Now we 
have begun exploring the importance of utilizing multiple 
data elements to provide accurate results. 
 
Introduction 
 
Time-Domain Electromagnetic (TEM) sounding techniques 
are successfully applied to various areas of geoexploration. 
TEM systems induce electical currents in the earth using 
electromagnetic induction. A time varying magnetic field is 
created using a coil or loop of wire. Faraday’s law of 
induction tells us that a changing magnetic field will 
produce an electric current, which in turn will create an 
magnetic field. Therefore, the primary magnetic field from 
the transmitter loop will generate a secondary  electric 
current in the earth. TEM techniques utilize the information 
about the secondary magnetic field produced by those 
secondary electric currents in the earth. The magnitude and 
rate of decay of those currents depend on the conductivity 
of the medium and on the geometry of the conductive 
layers. The induced currents in the earth are initially 
concentrated immediately below the transmitter loop. With 
time, those currents will diffuse down and away from the 
transmitter. The behaviour of the currents in the ground is 
often described as smoke rings in Nabighian (1979). In 
resistive media the currents will diffuse rapidly whilst the 
currents will diffuse slowly in conductive media. It is 
evident that making measurment of the output voltage of 
the receiver coil or the output of a magnetometer at 
sucessive times will reveal the electrical resistivity of the 
earth at sucessively greater depths.  
 
A number of authors have made efforts to generate 
enhanced resolutions of inverted models by utilizing 
various components of data. In Zhang (2001) the merits of 
joint inversion of surface and borehole data were studied. 
They have noted that the surface data have a higher signal-
to-noise ratio at early times while the borehole data have a 
higher signal-to-noise ratio at late times. Therefore, joint 
interpretation of surface and borehole data may give more 

information about the geological targets of interest. In 
Auken (2004) a 1-D laterally constrained inversion 
utilizing information on the neighboring 1D-models was 
implemented on TEM data to yield an enhanced resolution 
of subsurface. Viezzoli (2008) generated a 3d-model of EM 
data utilizing a 1d-inversion. In Groom 2005 we applied 
inversion on in-loop and out-loop data individually and 
concluded that out-loop data may resolve deeper structures 
better than in-loop data.  
 
In this paper, we formulate the 1d-inversion as a weighted 
non-linear least-squares minimization problem. The 
weighted non-linear least squares are suitable for dealing 
with the cases where the measurements have different 
uncertainties. Our inversion incorporates the data of 
multiple components and multiple stations. We have 
developed a strategy for selecting a weighting matrix so 
that each observed data is well represented in the final 
parameter estimates. We demonstrate with synthetic 
examples that incorporating the data of multiple 
components and multiple stations into the inversion help 
resolve the ambiguity due to the non-uniqueness of the 
models that fit the data and thus leads to more meaningful 
geological models.   
 
Forward Modelling 
 
We have developed algorithms to simulate the EM 
response of a layered earth model incorpating important 
system parameters. The EM responses were computed for 
systems with various current waveforms and survey 
configurations with appropriate frequency bandwidths. We 
allow both in-loop and out-of-loop mesaurements and 
provide for both moving and fixed transmitter 
configurations with arbitrary location and orientation of 
receivers. The method also allows for systems having 
dipole transmitters (small coil) as well as measured 
magnetic fields via direct magnetometer measuements or 
processed magnetic fields. This technique encorporates the 
periodic nature of actual systems as well as the actual 
bandwidth of commercial systems. To compute the time 
domain response, the frequency domain response is 
generated first. Calculation of the  frequency domain 
response involves taking into consideration of the 
characteristics of the earth response, as well as the 
transmitter and receiver geometries. One of the major tasks 
in the simulation is to compute an accurate earth response 
in frequency domain. The time domain response is obtained 
via Fourier series with the assumption that current 
waveforms are periodic which is a close representation 
particularly for ground data. The number of the harmonics  
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utilized in the transformation determines the bandwidth of 
the time domain data. We can simulate the responses 
excited with a wide variety of current waveforms such as 
adjusted square waves used by Geonics, Crone, TerraTeM 
and  Zonge etc, half-sine waveforms utilized by GeoTEM 
and MegaTEM, triangle-pulse waveform used by 
AeroTem, sawtooths waveform sused by UTEM, as well as 
a sine-on sine-off pulse as used by VTEM.  
    
Inversion 
 
We adopt the notation consistent with fitting a model to n 
pieces of data ),,,( 21 ndddd L=  utilizing model 
parameters ),,,( 21 pxxxx L= . In our particular case, these 

parameters consist of the resistivity and thickness of a 
layered earth. Let ))(ˆ,),(ˆ),(ˆ(ˆ

21 xdxdxdd nL=  be the 
predicted values from an estimated model. We utilized our 
forward modeling techniques mentioned above to compute 
these predicted values. The residual is defined as 

))(,),(),(()( 21 xrxrxrxR nL= with )(ˆ)( xddxr iii −= .  We wish 
to solve a non-linear weighted least squares problem: 

Minimize WRWRWRxf TT
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where W is a weight matrix and is diagonal.    
 
We utilize a quasi-Newton technique to solve the 
minimization problem. The Newton model is based on the 
assumption that )(xf  can be adequately modeled by a 
quadratic. At a point during the inversion process, we 
construct a quadratic approximation to the objective 
function )(xf  that matches the first and the second 
derivative values at that point.  However, this process 
requires a good approximation to )(2 xf∇ , the Hessian 
of )(xf . Suppose that )(xJ  is the Jacobian of )(xR . In our 
case, the Jacobian )(xJ  is computed numerically with a 
forward difference method.  Then the Hessian of )(xf can 
be expressed as 
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At iteration k, the first term in this expression can be 
obtained readily from the Jacobian )( kxJ . As a matter of 
fact, it is often possible to ignore the second-order term 
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sufficiently good Hessian approximation Dennis (1977). In 
such a case, the commonly called Gauss-Newton method is 
applicable. The new point 1+kx  can be found by solving the 
linear least squares problem: 
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This minimization problem can be solved with the normal 
equation system  
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In large-residual problems, the quadratic model is an 
inadequate representation of the function )(xf  as the 
second-order part of the Hessian is too significant to ignore.    
We utilized a technique developed in Dennis (1981) to 
approximate the second term ∑
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symmetric matrix 
kS  and the overall Hessian 

approximation is
kk
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point 1+kx  is obtained utilizing a trust-region approach. 
Updates to kS  are devised so as to mimic the behavior of 
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and the difference 
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weighted Frobenius norm. The update formula is: 
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In case of a zero residual target, the matrix kS  thus 
constructed does not necessarily become small. To avoid 
such a difficulty,  replace kS  by kk Sτ  prior to the 
computation  with |}|/||,1min{ kk

T
kk

T
kk xSxyx ΔΔΔ=τ . 

Moreover, the matrix 
kS  is omitted from the Hessian 

approximation in the case that the Gauss-Newton model 
produces a sufficiently good new point: 
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With a layered earth model, the EM responses of the late 
offtime channels are usually smaller than the responses of 
the early time channels. Mover, if the data consists of 
multiple components or multiple stations, there will be a 
significant variation of the data amplitude. The weighted 
matrix W determines to what extent each observation in the 
data set influences the final parameter estimates. 
Optimizing the weighted fitting criterion to find the 
parameter estimates allows the weights to determine the 
contribution of each observation to the final parameter 
estimates. In real applications, weights are not known 
exactly and therefore estimated weights must be used 
instead. Application of a good weight matrix may improve 
the condition number of the first matrix )()( xWJWxJ TT  of 
the Hessian and the approximate Hessian 

kB  discussed 
above and therefore helps enhance the feasibility that )(xf  
can be modeled with a quadratic.  Usually, weighted least 
squares utilize weights that are inversely proportional to the  
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standard deviation of an observed data. The i-th diagonal 
element iw  of W  is set to be 

iσ/1 , where 
iσ  is the 

standard deviation of the i-th data. We assume that the 
deviation of the data is proportional to a modified data 
value, that is, q

ii dλσ = , ni L2,1= , for some q , 

10 <≤ q .  Note thatλ  is independent of i and therefore it 
can be omitted since the weight for each observed data is 
given relative to the weights of the other observed data. 
Consequently, this will lead to a weight matrix with 

q
ii dw /1= .  Note that the larger the value for q is, the 

more weight will be imposed on low amplitude data. We 
tested many choices for q, which has led us to empirically 
set 
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where }1,max{|| max nidd i ≤≤= , }1,0min{|| min nidd i ≤≤≠= , 

that is, max|| d  and min|| d are the maximum and the 
minimum amplitude of the non-zero observed data. In case 
of minmax ||20|| dd ≤ , no weight is imposed and the 
minimization problem becomes a unweighted least-squares 
problem.  
    
Examples 
 
The multi-station inversion technique was applied to a 
synthetic ground TEM dataset. For the synthetic survey, a 
400 x 400 m loop centered at (0, 0) was used. Receiver 
locations were every 100 m on a north-south line from 0N 
to 800N (except at 200N where the north side of the loop is 
located).  The base frequency of the system was 30 Hz, and 
there were 20 off-time channels.  
 
Table 1: True Model for Synthetic Data 

Resistivity 
(Ωm) 

Thickness 
(m) 

Depth to Bottom 
(m) 

500 400 -400 
50 50 -450 

500   
 
 
Synthetic data for this survey was created for the following 
1D model: a 500 Ωm half-space with a 50 m thick, 50 Ωm 
conductor at 400 m depth (Table 1). Quasi-Newton 
inversions were performed on this data. The starting model 
was a 500 Ωm half-space with a 50 Ωm, 50 m thick 
conductor at -160 m was used. That is, the position of the 
conductor has been shifted up 240m from the true model. 
Inversions were unconstrained. With the conductor of the 
starting model at 160 m depth, a single-station inversion 
finds a good result only at some locations, though if the  

 
 
starting conductor is pushed deeper to 200 m, all of the 
stations will find a good result. 
 
The initial inversion (Figure 1) was a single-station 
inversion on the vertical component with the starting model 
outlined above. A good model was obtained at only two 
data points: 300N and 600N. The inversion results at these 
two points were close to the true model: the resistivities of 
the first and third layers were close to 500 Ωm, and the 
conductance of the second layer was close to 1 S, as in the 
model. The data is not very sensitive to the conductivity of 
this layer, but is sensitive to the conductance. At five of the 
other stations (0N, 100N, 500N, 700N, and 800N), the 
inversion results are similar to each other, but the models 
do not fit the data as well. In these models, the resistivity of 
the top layer is close to 500 Ωm, but the second layer is a 
strong resistor at 200 m, followed by a somewhat 
conductive layer of about 200 Ωm. These models fit the 
data well at early times, but do not match its curvature at 
mid-late times (Figure 2). 
 

 
Figure 1: Stacked 1D inversions results for the single 
station inversion of Hz.  
 
A further single station inversion was performed on the 
vertical component data, but the result of the previous point 
was used as the starting model, rather than using the same 
starting model at each point. This inversion had worse 
results: at the two points that had good results in the initial 
inversion, the results were poor. At every point, a model 
with a very resistive second layer at about 200 m depth was 
found.  
 
Results for a two-component inversion (Hx-inline and Hz-
vertical) were improved over the inversions on Hz only. 
Good results were obtained at five of the eight stations, but 
results were no better at 0N (where Hx has no response 
from the layered earth), and 700N and 800N. 
 
The use of the multi-station inversion technique 
significantly improved inversion results for Hz. In a multi-
station inversion using all eight stations, excellent results 
were obtained (Figure 2). The model fits the data well and 
is close to the true model (Table 2). The misfit of the model 
to the data was below 1% in only five iterations. Another  



Some issues on 1d-TEM inversion  
 
multi-station inversion, utilizing only stations 0N and 800N 
had good results as well. Both of these locations had poor 
results in the single-station inversion, but when used 
together in the multi-station inversion, a much better model 
was found.  
 

 
Figure 2: Decay at 700N. Red is the synthetic data. Blue is 
the result of the single-station inversion on Hz at 700N. 
Green is the result of the multi-station inversion on all eight 
stations. 
 
Table 2: Model from Multi-station Inversion 

Resistivity 
(Ωm) 

Thickness 
(m) 

Depth to Bottom 
(m) 

500 401 -401 
49 49 -450 

496   
 
This result is due to the ambiguity in a model of a single 
station data whereas the multi-station data seems to have 
only one reasonable model. 
 
Conclusions 
 
It is possible to apply multiple TEM data elements to an 
under-parametrized inversion for a single multi-layer, 
model. Such multiple TEM data elements can be data from 
multiple stations and/or data from different data 
components. However, it is our experience that the use of 
suitable weighting terms is critical to the process.  
 
The extension to multiple data components has a variety of 
benefits including the ability to include more parameters in 
the under-parametrized model, better signal to noise  
 
characteristics in the inversion process and large reductions 
in the number of suitable models. 
 
 
 
 
 
 


