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Abstract 

In our previous work (R.W. Groom, R. Jia And C. Alvarez 2003), we have developed algorithms 
to implement an Euler depth estimator as well as an inversion algorithm for detecting a simple dipole, 
which is often a suitable model for UXO applications. These algorithms worked independently with a 
single anomaly. We have combined these algorithms to determine the locations as well as the internal 
magnetization vectors of buried objects in a practical field survey. We start with the Euler deconvolution 
depth estimator that gives the locations of buried objects using the measured total field and its 
measured/calculated gradients. Based on these initial results, a subset of measured data is selected and a 
local search grid is set for each individual body. Then the magnetization inversion algorithm is utilized 
to find the locations and internal magnetization vectors of the buried bodies. The inversion process 
involves performing an automatic iterative grid volume modification according to a prescribed volume 
range of the buried objectives. Consequently we can determine the location and internal magnetization 
vector of each individual body by applying the inversion algorithm in an automatic way. In general, the 
locations identified in this way are more accurate due to the fact that only the measured total field data is 
used in the later stage.  It is shown that Magnetization Vector Inversion is relatively insensitive to data 
density and thus works more stably. Furthermore, starting with good Euler solutions is essential to 
guarantee an appropriate selection of dataset that incorporates substantial variation of the field and field 
gradients of each object. 

 
Introduction 

To investigate imaging, inversion and discrimination of metallic objects within the ground with 
the use of magnetic data collected on the surface; we decided to proceed first by applying the standard 
Euler deconvolution depth estimator. Euler deconvolution depth estimator is a powerful method to gain 
preliminary information on position, shape, and depth of causative bodies from gravity and magnetic 
fields (Reid et al., 1990, Changyou Zhang et al, 2000).  The total field and its gradients have to be 
provided for this technique. In a real survey in which the high density total field dataset is collected, we 
may grid the data to generate the derivatives of the total field by FFT.  

 
By setting appropriate size of a moving window that is appropriate to incorporate substantial 

variation of the field and field gradients of causative bodies individually, we may find all the possible 
locations of buried objectives by Euler deconvolution depth estimator. Geometrically, Euler solutions 
form broad clouds rather than dense clusters, making it difficult to outline causative sources. We utilize 
a post processing technique, the Rodin algorithm (V. Mikehailov et al, 2003), to eliminate some 
unrealistic solutions. Based on the spatial separation of the buried objectives, we then apply a technique 
to split the solutions thus obtained into groups, each of which forms a dense cluster which clearly outline 
possible causative sources. Finally, the location of each individual body is determined by means of 
statistics. Our imaging techniques enable us to visualize the Euler solutions in a three dimensional 
coordinate system.  
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Once the Euler solutions of  the buried objectives are provided, they serve as the initial solutions 

for performing the magnetization inversion algorithm.. The inversion process proceeds in an automatic 
way. A local search grid is set for each individual body and a subset of measured total data that 
incorporates substantial variation of the field and field gradients of the body is selected. By performing 
an automatic iterative grid volume modification according to a prescribed volume range of the buried 
objectives, optimum solutions giving the locations as well as the internal magnetization vectors of 
buried objects are produced in terms of minimizing the 2χ error functional.  

 
Euler Deconvolution Depth Estimator 

 
Calculating Derivatives of total field by FFT 
 

In order to utilize Euler deconvolution depth estimator, horizontal and vertical derivatives have 
to be either measured or calculated. In the case that only total field is measured, horizontal and vertical 
derivatives must be computed. The inline derivative or transverse derivative can be computed by either 
simple difference or FFT. To use FFT, a gridded magnetic dataset has to be prepared from which the 
vertical derivative can be obtained via the formula 
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where []F  denote the 2 dimensional Fourier transform, xk  and yk  are the wave numbers along X-axis 

and Y-axis respectively, 0z  is the altitude at which the survey is carried out. FFT is a useful technique to 
compute gradients, especially the vertical gradients  
 
Test Results for First Survey  
 

We illustrate the techniques with two synthetic surveys. In the first survey, we utilize 60 profiles 
of length 30m along the EW direction separated by 0.5m with a data sampling every 0.5m. In the second 
survey, we utilize 30 profiles of length 30m along the EW direction separated by 1m with a data 
sampling every 1m. 

Three small objects, each having dimension 20cm x 20 cm x 20cm and constant magnetization, 
were inserted in the survey region. The locations and the orientation of the internal magnetization 
vectors of these objects are given in Table 1. The first row indicates the object number, center, the 
magnetization vector and volume. The strength is with respect to the earth’s field. In both surveys, the 
background earth field is set as: 

Inclination = 10 degree, 
Declination = 75 degree, 

Intensity = 52500 nT. 
 
 
 
 
 
 
 

Table 1: Objectives in survey 

Body X center Y center Z center dip decl strength Cell Size 
1 0 8 -3 45 45 6 0.008 
2 -8 --8 -2.5 80 120 7 0.008 
3 8 -8 -2 35 70 7 0.008 
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We first generated Euler solutions for Survey 1. To utilize Euler deconvolution depth estimator, 
the moving window size is set 5.5m by 5.5m. We produced solutions with true total field data and 
gradients. The filtered Euler solutions by Rodin algorithm was displayed in Figure 1. The filtered 
solutions form dense clusters outlining the objects. In order to make the data more realistic, we added 
0.5 nT random noise to the true total field and then interpolated the data on a 64 by 64 grid (grid cell 
size 0.45m by 0.45 m). With this gridded dataset the gradients of total field was computed by FFT.  
Figure 2 shows the true vertical derivative and the estimated vertical derivative of total field by FFT 
along a particular grid line. It is seen that FFT gradients agrees well with the true value. Then solutions 
generated with this data set were produced. Finally, we also experimented with the noisy total field and 
its FFT vertical gradient and simple difference horizontal derivatives. All these results are presented in 
Table 2.    

We see from table 2 that if the total field and its derivatives are known accurately, Euler 
deconvolution depth estimator is a rapid and accurate technique for object location. In this particular 
example, reasonably good results were produced even with noisy total field data and estimated FFT or 
simple gradients. For FFT gradients,  both the horizontal positions and depth estimates are made to be 
within 0.4m of the known values. With simple difference horizontal derivatives, the horizontal positions 
are made to be within 0.2m of the true value and depth estimates are within 0.5m of the known depths of 
burial. For both cases, the depth estimates are within approximately 15% of the sensor to source 
distance.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Filtered Euler Solutions 
Filtered Euler solutions with Rodin algorithm, where Euler 
solutions were produced with true total field data and true 
gradients 

Cluster as Sphere  
Radius: 0.5m 
Depth to  center: 

 

Cluster as Sphere  
Radius: 1.5m 
Depth to  center: 
3.1m 

Cluster as Sphere  
Radius: 0.5m 
Depth to  center: 
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Test Results for Second Survey 
 

Likewise, Euler solutions were also produced for Survey 2. Recall that Survey 2 has less data 
density, that is, the line separation is 1m and the data is sampled every 1m.  We still added 0.5 nT 
random noise to the true total field and then interpolated the data on a 64 by 64 grid (grid cell size 0.45m 
by 0.45 m). 

It is shown that if total field and its gradients are known accurately, the locations of buried 
objects can be well determined, regardless of data density. However, with FFT or simple difference 
derivatives, the results generated with this survey are not as good as Survey 1 simply because of its 
coarser data sampling rate.   

Figure 2 FFT vertical derivative VS. true vertical derivative 
Blue  curve: true vertical derivative of total field 
Red curve: estimated FFT vertical derivative on a 64 x 64 grid 

 

 Body X center Y center Z center 
1 0 8 -3 
2 -8 --8 -2.5 

Actual locations 

3 8 -8 -2 
1 0.01 7.87 -3.10 
2 -7.97 -7.97 -2.48 

true Btotal and true gradients 

3 7.98 -7.99 -1.97 
1 -0.01 7.59 -2.64 
2 -7.82 -7.97 -2.58 

noisy  Btotal and FFT gradients 
 

3 7.86 -7.97 -2.18 
1 -0.13 7.87 -2.51 
2 -7.97 -7.95 -2.52 

noisy  Btotal and FFT vertical  
gradients and simple difference 

horizontal derivatives 
 

3 7.92 -7.80 -2.15 

 

Table 2 Euler Solutions for Survey 1 
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Magnetization Vector Inversion 
 
Ridge Regression Analysis for Magnetization Vector Inversion 

 
As stated in (R.W. Groom, R. Jia And C. Alvarez 2003), the magnetization vector inversion problem can 
be formulated as 
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Table 3: Euler Solutions for Survey 2 

 Body X center Y center Z center 
1 0 8 -3 
2 -8 --8 -2.5 

Actual locations 

3 8 -8 -2 
1 0.01 7.91 -3.0 
2 -7.99 -7.98 -2.51 

true Btotal and true gradients 

3 7.99 -8.0 -1.96 
1 -0.75 7.17 -2.34 
2 -8.01 -7.59 -2.78 

noisy  Btotal and FFT gradients 
 

3 7.8 -7.59 -2.45 
1 -1.0 7.28 -2.12 
2 -8.01 -7.64 -2.62 

noisy  Btotal and FFT vertical  
gradients and simple difference 

horizontal derivatives 
 

3 8.13 -7.80 -2.35 
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Obviously, there exist multicolinearities among the unknowns in the linear equation system (1). 
Therefore, in order to determine 1m , 2m , 3m , ridge regression technique has to be utilized, particularly 
in the case where the field survey is done at low magnetic latitudes.  
 
Test Results with Magnetization Vector Inversion 
 

We first apply the inversion process to Survey 1. For each  Euler solution with noisy total field 
and FFT gradients in Table 2, we utilized 1x1x1m cube centered at the location as a search grid. For 
each individual object, the total field data is taken from 6x6m square centered on xy location of the 
Euler solution, and the volume range is set between 0.0005 and 0.01. The inversion process searches for 
the optimum solution in terms of minimizing the 2χ  error functional. The first set of results was 
generated with true total field data. The second set of results was produced with noisy total field to 
which 0.5 nT random noise was added. Magnetization Vector Inversion results are illustrated in Table 4. 
It is shown that with reasonably good measurement of total field, we can well determine the locations 
and the magnetization vectors, the dip and declination angles in particular.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With Survey 2, we use the Euler solutions with noisy total field and FFT gradients in Table 3. For each 
individual object, we utilized 1.6 x 1.6 x 1.6m cube centered at its location as a search grid. Again, the 
total field data is taken from 6x6m square centered on xy location of the Euler solution, and the volume 
range is set between 0.0005 and 0.01. The first set of results was generated with true total field data. The 
second set of results was produced with noisy total field to which 0.5 nT random noise was added. The 
results are presented in Table 5.   
 
Note that Magnetization Vector Inversion is relatively insensitive to data density, as opposed to Euler 
Deconvolution Depth estimator. Even with noisy total field data, the location and internal magnetization 
vector of each object can be well determined.  
 
 
 
 
 
 

Table 4: Magnetization Vector Inversion Results for Survey 1 

 Body X center Y center Z center dip decl strength Cell Size 
1 0 8 -3 45 45 6 0.008 
2 -8 --8 -2.5 80 120 7 0.008 

Actual  

3 8 -8 -2 35 70 7 0.008 
1 0.09 7.97 -2.84 42.7 47.5 5.9 0.006 
2 -8.04 -8.05 -2.51 79.5 144.8 17.6 0.003 

True total 
field  

3 8.01 -8.0 -2.03 34.8 70.6 9.7 0.007 
1 0.12 7.95 -2.86 40.5 49.7 14.1 0.003 
2 -8.06 -8.09 -2.57 79.1 150.7 31.6 0.002 

Noisy total 
field  

3 8.01 -8.0 -2.03 34.2 70.9 9.8 0.006 
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Conclusions 

 
We have incorporated the Euler Deconvolution Depth estimator and Magnetization vector 

Inversion to determine the locations as well as the internal magnetization vectors of buried magnetic 
objects. We have concluded that if the derivatives of total field are obtained accurately, the locations of 
objects can be well determined by combining Euler Deconvolution Depth estimator and some post-
process procedures. Upon obtaining Euler solutions, we may utilize them as the initial coarse locations 
and perform Magnetization Vector Inversion. It is also concluded that Magnetization Vector Inversion is 
relatively insensitive to data density and can work more stably. However, it has to be noticed that 
reasonably good Euler solutions can speed up Magnetization Vector Inversion dramatically. Starting 
with good Euler solutions is essential to guarantee an appropriate selection of dataset that incorporates 
substantial variation of the field and field gradients of each object. 

We have utilized and modified a technique used in oil exploration for depth estimation and have 
shown that this can be useful. Our studies with real data are obviously more complicated as well as more 
interesting and some of these will be presented. 
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Table 5: Magnetization Vector Inversion Results for Survey 2 

 Body X center Y center Z center dip decl strength Cell Size 
1 0 8 -3 45 45 6 0.008 
2 -8 --8 -2.5 80 120 7 0.008 

Actual  

3 8 -8 -2 35 70 7 0.008 
1 0.02 8.02 -2.95 45.0 44.6 24.6 0.002 
2 -8.0 -8.17 -2.47 73.1 148 17.4 0.003 

True total 
field  

3 7.97 -8.02 -1.99 36.5 71.1 17.1 0.003 
1 -0.02 7.66 -3.07 48.2 63.8 28.1 0.002 
2 -8.0 -8.02 -2.47 77.9 132.0 17.4 0.003 

Noisy total 
field  

3 7.97 -8.02 -1.84 37.6 70.6 14.8 0.003 
 


