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Abstract. This paper primarily examines the effects of small-scale or near-surface conductivity inhomo- 
geneities on the magnetotelluric (MT) impedance tensor. These effects cause three different types of 
distortion results. (1) The well-known static shifts of sounding curves. (2) When the underlying regional 
setting is two-dimensional then the two regional impedances are mixed in an arbitrary coordinate 
system. Thus the level and shape of each sounding curve is distorted as are the phases. (3) At 
sufficiently high frequencies these effects generate anomalous magnetic fields that in turn alter the 
background phases. 

This tutorial first explores the usefulness of various MT tensor analysis techniques to overcome the 
problem of phase mixing and to recover regional information in the presence of local geological noise. 
Synthetic and experimental data are considered. A sequence of a priori models of increasing complexity 
are described. The use of appropriate decompositions of the MT tensor each with an increasing number 
of parameters is emphasised. In a second part, phase mixing and static shifts are examined from a 
synoptic view. Some static shift removal techniques that can be used in conjunction with the decomposi- 
tion are discussed. This paper is not a review but rather an investigation of a few methods that the 
authors have found useful with field data. 

Introduction 

Two useful a priori models for the magnetotelluric impedance tensor have existed 
for some time. The first, introduced by Cagniard (1953), is a model for 1D 
structures in which there are 2 related parameters at each frequency (phase and 
impedance magnitude). These 2 parameters are expected to vary smoothly with 
frequency. The second model, introduced for practical applications essentially by 
Swift (1967), extends the parametrization to 2D structures. In this factorization, 
there are up to 5 parameters per frequency. The strike parameter is expected to 
be relatively constant with frequency while the 2 complex impedances should vary 
smoothly with frequency. However experimentally determined impedance tensors 
often do not conform to either of these ideal models. 

Rarely can the conducting structures which are significant in producing the 
measured electromagnetic fields in the earth, be approximated as one or two 
dimensional over the entire frequency range of interest to the investigator. How- 
ever, in many cases the geological features of principal interest do have a dimen- 
sionality less than three over some subset of the frequency band. Too often in 
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these cases, the measured fields are significantly contaminated by 3D scattering 
effects of relatively small structures which are either of little interest to the investi- 
gator or too spatially undersampled to allow interpretation. If these structures are 
small then necessarily they must be near the surface to produce distinct scattered 
fields rather than merely contributing to an effective bulk response. Techniques for 
the understanding and removal or suppression of these small-scale, yet significant, 
scattering effects are the subject of the tutorial. 

As a tutorial, the purpose of this paper is not to review the literature with 
regard to the effects of 3D scattering in magnetotellurics but rather to summarize 
the authors' experiences with specific techniques for dealing with such local scat- 
tering effects. Excellent reviews are already present in Jones (1983), Jiracek (1990) 
and Cerv and Pek (1990). In this tutorial, there is a strong emphasis on the use 
of decomposition techniques in magnetotellurics; some methods which can be 
used in conjunction with such techniques; and the relationships between specific 
decomposition methods and other techniques. The subject is examined from three- 
points of view: (1) theoretical justification of concepts, (2) examples using synthetic 
data and (3) examples with experimental data. 

Small-Scale 3D Electromagnetic Scattering 

Although any 3D anomaly will have a galvanic response (mainly due to charges 
on boundaries) which interacts with an inductive response (due to internal vortex- 
like currents), the significance of the inductive contribution over the galvanic 
contribution is expected to decay with increasing period (West and Edwards, 
1985). If the scattered or secondary fields are due to isolated and confined anomal- 
ous conductivity structures, then the inductive response will eventually become 
weak as frequency decreases but charges on conductivity gradients can still strongly 
distort the measured horizontal electric field,/~. In this case, the measured electric 
field is often assumed to be approximately related to the background (regional) 
surface electric field,/~0, through a real distortion matrix C. Thus (Bahr, 1988), 

(Cxx(h go(0. E(0  : c(0 'o(0 = c,y(7) (1) 

Equation (1) is only appropriate for a subset of all 3D scattering situations but 
the use of this equation in magnetotellurics has never been rigorously justified 
from a theoretical perspective. 

We will show that several conditions must hold for Equation (1) to be strictly 
correct. Probably the most important of these conditions is that the spatial gradi- 
ents of the background field be small over the scale size of the 3D inhomogeneity. 
In other words, the background field should be essentially constant over the 3D 
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scattering body. This obviously requires the body to be small compared to the 
wave length or skin depth in the host. In addition, it must be sufficiently removed 
from any other conductivity boundaries that the spatial gradients of scattered fields 
from these boundaries are minimal in the vicinity of the scatterer. That is second- 
order scattering must be negligible. The geometric fall-off of the scattered fields 
is a function of the scale size of the inhomogeneity. Therefore where there persists 
a significant scattered field, the local background field will be closely approximated 
by the background field at the scatterer due to the required small gradients. We 
have assumed, implicitly, that the vertical component of the surface electric field 
is small relative to the horizontal components which would already be imposed 
by the above conditions combined with the insulating nature of the atmosphere 
at such low frequencies. 

As an example, consider a body of uniform conductivity embedded in a layered 
halfspace. With some assumptions, Equation (1) can be derived explicitly from 
the normal integral equation representation of the total electric field (e.g. 
Hohmann, 1976) 

E(r-) = Eo(~ + ilxw I g(7, ~)6crE(Ys) dv - 
J Vs 

_ vv. b fvs g(7, 7s) dr, (2a) 

where g is the scalar Greens' function for the background and 60-= (0--  o-b) is 
the difference between the conductivity of the scatterer and the conductivity of 
the background. /~0 is the background or primary electric field. 7 is an arbitrary 
measurement or field point while 7s is a source point within the scatterer. The 
scattered electric field in (2a) is represented by a vector (first integral) potential 
and a scalar potential (second expression) which are defined by integrals of the 
scattering currents within the body weighted by the background Greens' function. 

To obtain Equation (1) from (2a), let us first assume only that the total electric 
field is constant over the relatively small 3D inhomogeneity. From a diffusive 
point of view this requires only that the scale of the scatterer be small compared 
to the wavelengths in the scatterer and the host. Geometrically the assumption is 
much more restrictive. We will see that this assumption can be much weaker. 
However, to illustrate we begin with the stronger assumption. Thus from (2a) 

E(7) -= Eo(7) "F Iit~ogfA(7)Ei(Ts) -- V ~ .  fA(F-)Ei(Ts)], 
O" b 

(2b) 
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where 

fA(r-') = fv~ 8o-g(F, Fs) do 

and/~i(F~) is the total electric field at a point, F~, internal to the scatterer. 
Now the total field anywhere can be described by the background field and the 

total field within the scatterer 

/~(r~= /~o(r-)+ [ilxtOfA(r)I+ ~bb L(r)l/~i(tvs) 
(2c) 

where 

o2fA(r3 Lu(r- ) - 
Oxi Oxj 

(2d) 

Therefore, a simple tensor equation describes the electric fields 

/~(r) =/~o(r +) + G(r)/~;(Fs) (2e) 

for interior and exterior points where G is the sum of the two dyadic operators 
in (2c). For interior field points 

/~i(Fs) = [I - G , ] - l / ~ 0 ( r  -) (2f) 

under the assumption that the background field is uniform compared to the scale 
of the 3D body. Since both the background and the total internal fields are 
assumed uniform within the scatterer, the G for an internal point is not a function 
of 7. 

It follows that for exterior field points 

/~(r-) = [I + G(r)[I - Gi]-l]/~o(~. (2g) 

The distortion tensor, C, is therefore given explicitly in terms of the Greens' 
dyadics as 

C(r +) = I + G(~[I  - Gi] -I .  (2h) 

In general, the elements of this distortion or scattering tensor will be complex but 
in the limit for low frequencies they become dominantly real. 

As a simple example, if the body is a hemisphere and the background field is 
a constant then the total electric field is constant inside the hemisphere when the 
vector potential (2b) contribution to the internal electric field can be neglected. 
The required dyadic L (2c) for an interior point is known to be (by symmetry 
from the solution for a sphere in a whole-space) -6o-/3 times the identity dyadic 
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I (Hohmann, 1976). Equation (2f) for the fields interior to the hemisphere then 
becomes 

30"b 0 1 
/?;(7,) = ~ + 2 ~  

0 3~b ~?o(r3 = c(~3L?o(r3 (3) 

o- + 2o'b/ 

for any position within the hemisphere. The expression for the exterior scattering 
matrix, C (r-), can then be derived using Equations (2h) and (2e). Although, these 
expressions can be derived directly from a scalar potential (Groom and Bailey, 
1991), this development is instructive to illustrate how the scattering matrix C 
arises and under what conditions Equation (1) may break down. 

Although, we have been able to justify the use of Equation (1) for scattering 
situations where the internal field is approximately uniform, only structures with 
specific geometrical symmetries have constant total internal electric fields. For the 
case of other geometries, a new first order approximation has been derived which 
can be regarded as an extension of the Born approximation (Habashy et al., 1991). 
This approximation is extremely pertinent to the validity of Equation (1). 

The Born approximation requires that the internal electric field be in-phase with 
the background field but does not account for the magnitude variation that can 
be caused by even moderate conductivity contrasts. This extended Born approxi- 
mation is based on the fact that for a field point internal to the scatterer, F, the 
Greens' dyadic (2a) is singular when 7 = 7s. For this case, it may be expected that 
the gradients of the Greens' dyadic are much larger than the gradients of the 
internal field. This assumption leads from (2a) to a linear approximation for the 
internal field from the background field 

Ei(F,) = F(Ys)Eo(F,) (2f) 

which is independent of the source characteristics but which is dependent on the 
scatterer geometry, the conductivity contrast and the position. In the low frequency 
limit, F is real and thus the internal field is in-phase with the background field 
but has a first-order correction for magnitude due to the charges caused by the 
conductivity contrast. Under this approximation, Equation (1) can be derived 
explicitly with only the assumptions that the frequency be sufficiently low to 
neglect the vector potential contribution to the internal electric field and that the 
background field be uniform over the scatterer. The approximation is indicated 
to be quite accurate (Habashy et al., 1991) for most scattering problems which are 
relevant to magnetotellurics, although the approximation breaks down in cases 
where Equation (1) would not normally be expected to apply. That is, when there 
are large source field gradients over the scatterer, when the frequency becomes 
sufficiently high that inductive scattering within the inhomogeneity could not be 
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neglected, when the scatterer becomes many orders more conducting than the 
background and when the source is coupled with the body such that current 
channelling is negligible. 

Effects of Small-Scale Scattering 

The scattering effects of the distortion matrix, C, (1) are significant on the mea- 
sured fields. It will, in general, mix the regional electric field components into the 
measured field components at the local site. If the background is two-dimensional 
and the TE and TM electric fields have different phases, then the measured field 
components will, in general, have a phase which is neither TE nor TM. The form 
of the distortion matrix, as a linear operator, will depend explicitly on the coordi- 
nate system in which it is expressed. 

When the 3D body distorts the electric field from that of the background 
response, an anomalous current is produced which in turn produces an anomalous 
magnetic field. If the total electric field in the scatterer is in-phase with the 
background field then this anomalous magnetic field is in-phase with the primary 
electric field and thus can be described by a magnetic scattering matrix, D, (Groom 
and Bailey, 1991) 

/~a = D/~o. (4a) 

This result can also be seen from the integral equation representation 

IYIa = 17 X f t  = V X f v sg (Y  , Fs)$o@,(F~) dv (4b) 

If the first term in (2b) is neglected in the scattered electric field, then the internal 
electric field and thus the scattering currents are in-phase with the background 
field. The components of the scattered magnetic field are therefore simply pro- 
portional to the vector dot product of the primary electric field vector with combi- 
nations of single derivatives of f A ( ~ .  Thus, even though the frequency may be 
low enough and the structure small enough to neglect induction effects of the 
small 3D scatterer, there may still be a contribution to the magnetic field from 
the galvanic scattering. 

Structural Dimensionality and Invariants 

It is convenient to first examine the effect of 3D scattering on traditional methods 
with the use of synthetic data. Here, we have used a regional structure which is 
two-dimensional (2D) and superimposed on the model a 3D hemispherical anom- 
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aly (Figure la).  (The true 2D response of the background is included in Figure 
lb . )  The hemisphere is sufficiently removed from the 2D boundaries so that the 
primary fields are essentially constant over the scatterer (verified numerically) so 
that the 3D electric and magnetic fields can be determined analytically as a function 
of position (Groom and Bailery, 1991). We take, as an example, the situation 
where the measurement  axes are parallel and perpendicular to the 2D strike and 
the measuring position is outside the hemisphere at an angle of 30 degrees (Site 
03 in Figure la)  to the 2 measurement  axes. To the synthetic responses, noise can 
be added to investigate the problem of parameter  bias and resolution. The syn- 
thetic noise distribution used here is Gaussian with equal variance in all elements 
and mean zero. The noise is added such that N% noise means the variance is N% 
of the square of the magnitude of the largest impedance matrix element. 

First, let us examine two commonly used 1D parameters;  namely the square- 
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root of the determinant (called the "effective impedance") and the anti-trace or 
arithmetic average of the off-diagonal elements (called the "Berdichevsky aver- 
age") (Berdichevsky and Dmitriev, 1976; Ranganayaki, 1984). The site is so 
situated that the determinant (Figure 2) is quite small due to the extent of current 
channelling. As such, the tensor becomes poorly conditioned and the effective 
impedance (DA) phase is badly determined in the presence of noise. Conse- 
quently, the 1D conductivity model generated from this parameter inadequately 
represents the true regional structure (Figure 1). The Berdichevsky average (BA) 
produces a more stable estimator with a fairly reasonable conductivity model 
(Figure 2). The adequacy of the inversion for the BA estimator over the effective 
impedance should not be construed as generally true but rather depends on the 
specific conductivity model. Note that the presence of the anomalous magnetic 
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field results in a frequency-dependent phase perturbation at the higher frequencies 
for both these estimators. This perturbation requires that a fictitious thin resistive 
surface layer be included in the 1D conductivity structure to fit the data. In 
experimental situations when the structures are very large, the 3D response may 
not be significant until longer periods with the result that the phase perturbations 
due to the anomalous magnetic effects could result in additional layers being 
included at some depth. 

Next we examine a traditional 2D rotation parametrization of the data (Swift, 
1967). Figure 3 contains 6 conventional parameters from this method (skew plus 
the 5 parameters previously mentioned) for the same site as above. Groom and 
Bailey (1991) discuss many points regarding the figures but we summarize only a 
few. The strike direction should be either 0 or 90 degrees, but is incorrectly 
determined by this method. Rather the estimate of the strike angle at short periods 
is the azimuthal position of the site. (The local current azimuth or direction of 
current channelling is determined primarily by the local structure when the 3D 
scattering is severe. If the background is 1D then this current azimuth must be 
the azimuth of the site for such an isotropic structure (Groom and Bailey, 1991).) 
At mid-band periods, the strike estimate undergoes a frequency-dependent transi- 
tion to a long period asymptote. This transition takes place over just those periods 
where the regional structure has its largest inductive response. Under this 2D 
parametrization, strong 3D static effects mean the strike direction is usually a 
function of the local site geometry and thus the local current channelling. The 
recovered impedances are mixtures of the two regional responses. This can be 
seen most obviously in the phases but also in the shapes of the apparent resistivity 
c u r v e s .  

The reader will note that the error bars sometimes are not centered about a 
data point in these figures. In most cases, the parameters are nonlinear functions 
of the impedance data. As such, the presence of noise will not only scatter the 
value of a parameter as in a linear system but will also bias the result. Thus a 
parameter derived from data with noise will tend to be scattered about a point 
removed from the value of that parameter when no noise is present. That is any 
amount of noise could cause the parameter estimate to be biased consistently in 
one direction (up or down). In these plots, the scatter in a parameter is determined 
in an empirical fashion. Noise is added to the data then the parameter determined; 
a different noise realization added and then the parameter redetermined and so 
on for a set of N noise realizations. The scatter of the parameter is then examined 
from the set of realizations and this scatter is plotted as an error bar. In this way, 
it can be seen that some parameters are easily biased by noise whereas others are 
relatively unbiased. 

We use here a non-conventional parameter (i.e. Figure 3); the residual between 
the estimated impedance tensor, Z, and the actual measured data, Zm, (Groom 
and Bailey, 1989a), 
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recovered  2D strike es t imate  while the off-diagonal  e lements  are the es t imated  
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TE and TM impedances. In Figure 3, a simple least squares norm has been used 
which is normalized by the magnitude of the elements of the measured data so 
that it will lie between 0 and 1. If the residual is acceptable it should be less than 
the noise level (here 0.04). At short periods, the residual is acceptable but grows 
to an unacceptable level at long periods. The residual is acceptable at short periods 
because the conductivity structure is 3D locally and 1D regionally while at longer 
periods it becomes 3D-2D and because the 3D structure is rotational invariant in 
the z-axis and thus C for this structure is a symmetric operator. The use of a 
residual statistic is essential in the examination of the applicability of models to 
the data. Since the variance is equivalent for all 4 elements of this synthetic data 
tensor, the least squares norm is equivalent in this case to a chi-square type norm 
where the differences in the data element and the estimated tensor are inversely 
weighted by the variance in this data element. It is not obvious what norm should 
be used for defining the residual statistic, although one of the authors (RG) uses 
a chi-square normal for almost all data analysis. Figures 5-7 utilize the chi-square 
norm. 

Mathematically-Based Decompositions 

Over the last decade, a number of attempts have been made to develop useful 
MT tensor decompositions which are mathematically motivated. These decomposi- 
tions are based specifically on a mathematical treatment of Zm as a complex rank 
2 tensor rather than a formulation of Zm as a response function that links the 
measured fields in the presence of 3D scattering. Although the most comprehen- 
sive of these investigations is present in Spitz (1985), we will briefly examine 
Eggers' (1982) eigenstate decomposition as the first such method and refer the 
reader to Groom and Bailey (1991) for a more detailed discussion of others and 
their comparisons. The eigenvalues of Eggers' decomposition are not the tra- 
ditional eigenvalues of a rank 2 tensor but are defined via a matrix which rather 
than being diagonal has zero diagonal elements (sometimes referred to as anti- 
diagonal). The eight parameters of Eggers' decomposition are the magnitude and 
phase of the complex eigenvalues, the orientations of the major axes of the electric 
eigenvector polarization ellipses and their respective ellipticities. As previously, 
we again use the synthetic 3D data to examine Eggers' decomposition and reiterate 
that these data represent only a single 3D scatterer and there are no inductive 
effects associated with it. 

In Figure 4, the complex eigenvalues of the impedance tensor are displayed as 
scaled magnitude and phase. The orientations and ellipticities of the eigenvectors 
are also plotted. Eggers (1982) states that the eigenvalues are the 2D rotated 
impedance estimates when the structure is 2D. Stated in another way, if one 
assumed the structure was 2D and determined the impedances algebraically then 
one would obtain the equation for Eggers' eigenvalues. (When the structure is 
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2D, algebraic methods produce stable rotationally-invariant estimates of the 2D 
impedances independent of the strike estimate which can be unstable at high noise 
levels.) How similar are the algebraic eigenvalue estimates of impedance and the 
traditionally rotated estimates when 3D scattering is significant? Figure 4 shows 
clearly the mixing of the regional responses in the eigenvalues. In fact, close 
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comparison of Figures 3 and 4 indicates that the major impedance estimates by 
the eigenvalue method and the conventional 2D rotation method are virtually 
identical. The minor estimates are also extremely similar until the minor estimate 
from rotation becomes unstable due to noise. This similarity between Swift's and 
Eggers' methods is the same for any site inside or outside the hemisphere. The 
implication being that under such 3D responses, the rotated 2D estimates are 
essentially the eigenvalues. However, estimation of the minor eigenvalue by a 
rotation method may be unstable. A rotationally invariant algebraic estimate will 
be generally preferred. 

We now turn to the eigenvector characteristics. At this site, one eigenvector 
orientation is very constant about 30 degrees (the site azimuth w.r.t, the coordinate 
system, Figure la) while the other begins perpendicular but undergoes a transition 
much like the 2D strike estimator (Figure 3). These orientations are much more 
closely related to the local current channelling than any regional inductive response 
and as such are locally site specific in 3D environments. One ellipticity is essentially 
zero while the other is non-zero only through the 2D inductive range. This ellip- 
ticity information may be useful as channelling-induction indicators when fully 
understood. 

The LaTorraca et al . 's  (1986) produced no significant variation from these 
results. The skew angle for this method provided no further information beyond 
the traditional skew. One of the decompositions of Spitz (1985) is essentially 
equivalent to those of the two aforementioned authors for these scattering con- 
ditions, while the other of Spitz's two decompositions is very similar to a technique 
developed by Yee and Paulson (1987). Although, the latter two methods appear 
to offer the possibility of recovering information about the regional responses 
(Groom and Bailey, 1991), the methods have not yet been understood nor de- 
veloped to utilize them in normal processing circumstances. 

Useful application of the mathematical decompositions is, however, restricted 
for reasons other than those discussed. These techniques do not address the 
occurrence of level shifts of the eigenvalue magnitudes. This level, or "static", 
shift can be seen by comparing the eigenvalue magnitudes of Figure 4 with the 
correc t  or regional magnitudes shown in Figure lb. We will return to this level 
problem below with regard to the physically motivated decompositions. 

Physically-Based Decompositions 

In this section we consider decomposition techniques that yield more obviously 
physically meaningful parameters (e.g. regional strike and regional impedances) 
rather than mathematical parameters (e.g. eigenvalues) which are, as yet, not so 
readily interpretable. The first physically based decomposition was introduced by 
Larsen (1977). The model consists of a local, small-scale 3D anomaly over a 
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layered earth. In this case, the assumed form of the impedance tensor can be 
derived from (1) as 

o 
(6) 

Z,, is the normal impedance of the layered earth. The distortion matrix elements, 
Cij are taken to be real and frequency-independent at sufficiently low frequencies 
for which the inhomogenous top layer is thin compared to the penetration depth. 
Therefore, all elements of the measured tensor must have the same phase if they 
are to be explained by Equation (6). Larsen extended this model to include the 
possibility of a magnetic field associated with the current channelling as discussed 
above (Equation (4)). Although the factorization was general, Larsen's algebraic 
method of decomposition was limited to distortion or scattering matrices of only 
a certain form which may be categorized as being for the case of weak scattering 
(Groom and Bailey, 198%). 

If the regional conductivity distribution is two-dimensional then more than one 
phase can occur in the tensor (Bahr, 1988). Extending Equation (6) to include the 
possibility of two regional 2D impedances and the possibility of a magnetic field 
associated with the galvanic scattering, we obtain (Groom and Bailey, 1991) 

Z(to) = R(0)C[I - Z2(w)D]Z2(w)Rt(0). (7a) 

Here the scattering matrices, C and D, are defined in the natural or intrinsic co- 
ordinate system of the underlying 2D structure defined by the 2D strike. R(0) is 
a rotation operator, I is the identity matrix and Z2(o~) is the background or 2D 
off-diagonal impedance tensor expressed in the strike co-ordinate system. Notice 
that the electric distortion matrix, C, is assumed real while the magnetic distortion 
operator on the impedances, [I - Z z ( w ) D ]  is clearly complex and frequency depen- 
dent. The electric effect causes a mixing of the 2D regional impedances whereas 
the magnitude effect causes mainly phase distortions. The magnetic distortion 
decays with decreasing frequency approximately as ~w. 

One important problem associated with conventional 2D methods and the 
mathematical decompositions is that often the regional responses will be mixed in 
the impedance tensor when there is galvanic 3D scattering. Once the tensor is 
rotated, the impedance tensor elements can reside in any of the four complex 
quadrants with the result that if the tensor is studied in the wrong co-ordinate 
system the phases of the impedances may seem to extend outside normal bounds. 
As an example, a data set is chosen from the 1987 Lithoprobe survey in the 
Canadian Cordillera. This site is situated in a valley which follows a major fault 
(Slocan Lake Fault). If one examines the data in a geographic (NS-EW) co- 
ordinate system (the measurement axes), then the phases of the EW impedance 
extends beyond expected 0-90 degree bounds up to more than 180 degrees (Figure 
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5). (Here  a negative is removed from the Zyx element as a convention). The other 
subplots are the apparent resistivity, a normalized X 2 error  of fit (Groom et al. 
(1991)) and a plot showing the strike angle and the conventional skew as an angle 
(arctan of skew). Note how the skew rises to large values as the phase extends 
out of the predicted quadrant.  The next figure (Figure 6) illustrates the data 
decomposed via a traditional rotated method.  Notice again how the Y X  phases 
rise out of the predicted coordinate system. The strike estimate is aligned with 
the strike of the valley at short periods but asymptotes to zero degrees (the 
measurement  axes) at long periods. The synthetic results (e.g. Figure 3) indicate 
that a combination of strong local 3D current channelling and strong 2D current 
channelling can result in a long period asymptote for a strike estimate from a 2D 
assumption that is neither the local direction nor the regional direction. In fact, 
this is the first clue that there may be an underlying almost 2D strike on a large 
scale. 

Rotat ion of the data to another  co-ordinate system can produce bet ter  behaved 
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phase responses. For example if the data are rotated to 30 degrees East of North 
(Figure 7) then both impedance phases are considerably better behaved. Is there 
any physical meaning to this azimuthal direction of 30~ 

These results suggest the presence of strong 3D effects on the measured electric 
field. We therefore utilize a galvanic distortion decomposition first introduced by 
Bahr (1988) in an attempt to separate the phase and apparent resistivity responses 
of the background and find the correct co-ordinate system. Bahr combined Swift's 
(1967) and Larsen's (1977) model. The model is a small 3D anomaly within a 2D 
Earth with the governing equations being simply (ignoring magnetic effects) 

Z((o) = R(0)CZ2(to)Rt(0) (7b) 

where Za(o)) is a regional off-diagonal tensor. Various parameters are recovered by 
decomposing the tensor data under this model. The recovery of these parameters is 
generally a non-linear inverse problem (Groom and Bailey, 1989a). 

We will illustrate our discussion of such a decomposition with the synthetic and 
experimental data previously used. We will utilize the decomposition method of 
Groom and Bailey (1989), although the general results will be similar for all such 
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phase estimates. 

decompositions. This method is based upon a general subfactorization (not SVD) 
of the electric distortion matrix into 3 constituent parts and then a non-linear 

minimization to determine a subset of  the parameters .  

As we now have available four physically based decomposit ions,  or models,  
f rom 1D up to subsets of 3D, we would like to treat  the decomposit ion as a type 

of inverse problem. As we move to higher dimensional models,  we introduce more  
parameters .  Thus, we must not only examine the residual between estimated data 
and measured data but whether  a reduced residual is simply due to an increase in 
the number  of model  parameters  (or " roughness") .  In addition, we wish to know 
the resolution of a particular pa ramete r  in any given decomposit ion.  It  is important  

to understand that the extent of the current channelling can severely affect the 
ability to invert the tensor data. I f  there is extreme current channelling, then the 
local current  is forced to flow along a specific direction independent  of the source 
polarization (class 6 type distortion, Bahr  1991). That  is, the local electric field 
lives in a one-dimensional  vector  space whereas the background electric field and 
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magnetic field live in a two-dimensional space. As such, C and thus Z are singular 
for their rank is only one. This then becomes an ill-posed inverse problem if no 
a priori  constraints are made. An examination of the eigenvalues, as initially 
suggested by Eggers (1982), is therefore extremely useful as a precursor to any 
analysis. 

To illustrate these points, let us examine the effect of noise on the resolution of 
the true regional strike under the 3D model. This is probably the most fundamental 
problem associated with 3D near-surface effects on MT data. To illustrate effec- 
tively we have rotated the data 30 degrees counterclockwise to a different measure- 
ment axes. Figure 8 (bottom right) contains a contour plot of the residual (nor- 
malized chi-square) as a function of period and regional strike for the synthetic 
data. (The noise for this first result is extremely small; just sufficient to dominate 
computer machine noise.) In this figure, below -1.0 indicates a good fit while 
about 3.0 indicates an unacceptable fit. At short 
of a preferred strike due to the fact that the site 
lateral contacts to sense them at these periods 

periods, there is little indication 
is too far removed from the 2D 
(Figure la). In other words, at 

short periods the structure is approximately 3D over 1D. In the mid-band, the 
preferred strike is a fairly narrow strip about 30 degrees (true regional strike) 
while in the long periods the strike again is not so well determined. This latter 
result is due to the fact that there is essentially only one regional phase at long 
periods as the 2D structure is now simply a thin-sheet. Thus we see that the strike 
at long periods, can no longer be resolved within the noise. The same figure 
(bottom left) also shows the same information but now 4 per cent noise is added 
albeit in a severe manner. Notice that the strike cannot be resolved at all except 
possibly in that band where the 2D induction is strong and even here the resolution 
is not particularly narrow. This is due, to a great extent, on the severe current 
channelling which poses a problem for any inverse parametrization. 

The distortion parameters, however, are more stable in the presence of noise 
(right Figure 8). Here the shear is contoured as a function of strike and period 
for the low noise (top right) and high noise (top left) data sets. Using this infor- 
mation and seeking a smooth (fewest parameters) model, one attempts to obtain 
the best parametrization as a trade-off between the degree of roughness (number 
of parameters) and the residual. For example, one would generally desire a strike 
direction which was consistent with a direction resolved from the residual plot 
over a part of the period band in combination with the fewest distortion parameters 
(i.e. fixed over a period band). A strike of near thirty was consistent with both 
requirements. For the high noise, the preferred strike was weakly defined as less 
than 30 degrees. For these angles, only an angle near 30 degrees allowed for 
frequency-independent distortion parameters. Fixing the strike at thirty degrees 
and letting the remaining parameters be free resulted in the parametrization shown 
in Figure 9 for the noisy data (measurement axes rotated back to original for 
comparison to earlier figures). The distortion parameters are without constraint 
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Fig. 9. Strike constrained Groom-Bailey (1989) decomposition for synthetic data at Site 03. Regional 
impedance estimates, regional strike, local current azimuth estimate, L2 residual and the two removed 

3D factors (twist and shear) are plotted. 

qu i te  cons tan t .  T h e y  can now be  f ixed to p r o d u c e  a m o d e l  which  requ i res  4 N  + 3 

p a r a m e t e r s  w h e r e  N is the  n u m b e r  of  pe r iods .  T h e  res idua l  is at  the  cor rec t  level  
at a b o u t  0.04. 

H a v i n g  sat isf ied ou r  r e q u i r e m e n t s  of  min imiz ing  the  r e s idua l  whi le  having  the  
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fewest azimuthal parameters (strike plus distortions parameters), we now investi- 
gate whether we have accomplished our objective of recovering the true regional 
impedances. The impedance phases are now unmixed and fairly well resolved 
(Figure 9). For periods shorter than 0.01 seconds, they still retain phase effects 
of the currrent channelling but below this period they are extremely close to the 
true regional phases (Figure lb). The true shapes of the regional apparent resis- 
tivity curves are obtained with only slight high frequency modification from the 
galvanic magnetic effects. The previous strike angle analysis indicates that the 
magnitude splitting at short periods between the recovered TE and TM modes is 
due to the near-surface structure and not the larger 2D structure. The splitting 
that remains is due to a diagonal operator (local anisotropy) (Groom and Bailey, 
1989a) which can always be written in the form: 

1 - s  0 ) 
A = g  0 l + s  

The factor s (local anisotropy) can often be estimated algebraically from the short 
period data and then removed from the entire period range particularly when the 
non-lD, high frequency scattering is not of interest to the investigator. Thus, the 
current relative level between the apparent resistivities can often be found but the 
one mutual static shift (g, site gain) is more difficult. This final shift is most severe 
inside or on an outcropping anomaly, much decreased immediately outside the 
3D scatterer while decaying rapidly to 1 with increasing distance from the anomaly�9 

The problems of analysing 3D data with 2D models, as seen by the use of 
synthetic data, relate directly to actual experimental data. Examination, for exam- 
ple, of the earlier experimental data indicated that while the data were near 2D 
at higher frequencies following the strike of the valley, the data became strongly 
3D by 1 second�9 This is a common problem�9 Data are often collected along valleys 
where access and instrument deployment is reasonable�9 However, the sediments 
in the valley often provide good gatherers of current so that at long periods there 
are strong 3D current channelling effects when the valley is no longer long enough 
or straight enough to be approximated two-dimensionally. In this case, the current 
channelling was so severe constraining the current along 30 degrees East of North 
(this is the physical meaning associated with this azimuth as mentioned above) 
that it was difficult to resolve the regional strike within the noise levels. A neigh- 
bouring site some 15 kilometers to the West had less severe 3D effects and 
indicated an underlying strike of 60 degrees East of North at periods longer than 
about 1 second after decomposition. Applying this strike to the decomposition of 
this data provided a good fit, well resolved phases and long period phases which 
matched those at the neighbouring site. This process was carried on for sites along 
a profile of more than 150 kilometers (Jones et al., 1988) most of which had strong 
3D effects especially at long periods�9 Figure 10 compares the phases recovered 
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after decomposition from a number of these sites each separated from each other 
by about 10-15 km E-W. 

Static Shift as a Sub-Problem of Decomposit ion 

The decomposition (7b) involves a real 2 x 2 distortion matrix C: Its four elements 
determine the two ways in which electric fields are modified by small-scale local 
conductivity anomalies. The normalized off-diagonal elements of C describe angu- 
lar deviations of the regional electric fields. In fact, if the impedance tensor has 
been transformed into the coordinate system of regional strike then the expressions 

/31 = tan-l(CxY~ /32 = tan-l(Cyx~ (8) 
\Cyy/ \Cxx/ 

determine two angles (Figure 11), which describe, how much the two electric fields 
associated with TE and TM modes of the regional 2D anomaly are rotated out of 
their normal directions. Bahr (1991) shows that these angles can either be calcu- 
lated from the decomposition parameters twist and shear of Groom and Bailey 
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(1989a) or directly from the elements of the measured impedance tensor after 
decomposition. 

While the ratios (8) are accessible, two other distortion parameters remain 
which describe amplifications of the two electric fields associated with the TE and 
TM modes of the regional 2D anomaly. These factors are often referred to as 
static shift factors. It is important to point out that even the physical decomposition 
techniques of Bahr (1988) and Groom and Bailey (1989) do not solve the problem 
of static shift but rather allow for a possible application of an additional static 
shift removal technique. 

The conductivity model for the most complicated physical decomposition incor- 
porates a superposition of a regional 2D and a local 3D anomaly. For a single 
frequency, the regional anomaly is sufficiently described by up to 5 parameters, 
that is, the regional strike as well as the 2 phases and the 2 apparent resistivities. 
It is assumed that the effect of a local anomaly is described by the 4 real elements 
of the distortion matrix C. A 10th parameter is required that addresses the residual 
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problem referred to above. As any measured impedance tensor provides only 4 
complex impedances, it would seem that a smaller set of parameters must be 
calculated in order to obtain a unique inverse. Of course, in some situations not 
all 8 data in the tensor are independent. For example in the 1D background case, 
there are at most 6 parameters constituting the model. Also, since some of the 
parameters are assumed frequency-independent, such as strike and the elements 
of C, it may initially appear that multi-frequency inversion might allow for a 
unique inversion for the entire set of 10 possible parameters. However, part of 
the non-uniqueness is determined by the basic physics. The local anisotropy and 
the regional anisotropy cannot, in general, be separated without additional infor- 
mation (Groom and Bailey, 1989a). 

Generally, there still remains two unaccessible frequency independent pa- 
rameters. In the context of physical decomposition, we can describe these two 
unaccessible parameters by combinations of elements of the distortion matrix C: 

(-,2 ]1/2 D' = ( C 2  + ~yx](~2 ]1/2,  D " =  (C2:y -.F v y y ,  . ( 9 )  

These expressions can be derived directly from Equation (7b) when expressed in 
the regional coordinate system. These parameters describe how much the ampli- 
tudes of the two electric field components are modified from the underlying 
response. In terms of the Groom and Bailey (1989a) decomposition, the two 
parameters are combinations of the scalars, g (the so-called site gain), and s (the 
local anisotropy). In the case of the 1D decomposition of Larsen (1977) only the 
site gain could not be identified uniquely. If the background is 1D, then the local 
anisotropy in the Groom and Bailey method can be recovered but again the site 
gain cannot be determined uniquely. 

The following sections summarize some of the techniques that have been used 
to estimate the one or the two static shift factors with respect to some additional 
information besides the single site tensor data. These techniques are reviewed by 
Singer (this volume). Here we only intend to study their usefulness in the presence 
of complicated local conductivity structures which require both a decomposition 
and a static shift removal technique. Nevertheless, we want to point out clearly 
that so far none of these static shift removal techniques have been proven to work 
well in every geological environment. 

Modelling C by the Use of Additional Information about the Surface Layer 

This method provides an independent check of the near-surface conductivity as 
well as the geometry of local structures by use of some rapid geoelectrical mapping 
technique. The resulting resistivities may provide the input for a forward modelling 
with some DC or thin layer model. That model then hopefully yields the elements 
of the distortion matrix C. 

In particular, bimodal thin layer models may account for both angular deviations 
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Fig. 12. 
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Distortion matrix parameters Cyy (left) and cxx (right) as calculated from a DC model 
(Kemmerle,  1977). 

and amplifications of the telluric field. In theory, they can provide a complete 
distortion tensor rather than a scalar distortion factor. As an example, Figure 12 
presents Kemmerle's (1977) results of the Cxx and Cyy distortion matrix elements 
as a function of location. A constraint of the mapping technique is that if the 
extension of the local structures is unknown, the geoelectrical mapping has to 
cover a very large area, requiring extremely time consuming field procedures. The 
distortion matrix, C, can vary greatly depending on the specifics of the 3D local 
structure. 

Alternatively, the resistivity obtained with some geoelectrical or TEM technique 
at a single point can simply be used to fix the correct position of the high-frequency 
MT curves (Sternberg et al. (1988), Pellerin and Hohmann, 1990). Spies (1989) 
showed that there can be an overlap in the depth of investigation of the TEM and 
the MT method. In contrast to the mapping technique mentioned above, only a 
scalar factor is found. Craven et al. (1990) experimenting with these techniques 
with large data sets had little success. 

All techniques mentioned in this section reveal a distortion factor or distortion 
tensor for some high frequency band of the MT sounding curves. These factors 
can be applied only with great care to the low frequency band of the curves if 
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additional 3D scattering occurs at greater depths: At sufficiently low frequencies, 
experimental impedance tensors often have the form 

z = c , , c d z n .  (10) 

Here Cu and C d refer to distortion tensors which are related to surface and deep 
conductivity anomalies, respectively. Only CL,, of course, is addressed with the 
surface layer techniques. Determination of CL, from the short period band would 
enable its removal from the entire band but Cd would still remain at longer 
periods. As the decomposition produces regional estimates which still contain up 
to 2 unknown static factors, there would be two shift level effects on the longest 
period impedance estimates. 

Extension to Long Periods and Comparison with Undistorted Reference Impedance 

At periods below a few cycles per day (cpd) an EM transfer function equivalent 
to the MT response Zn can be obtained from purely magnetic data, using either 
the Sq or Dst source field (Schmucker, 1987). Although strong experimental efforts 
are necessary to obtain stable long period magnetotelluric data, the MT method 
can be extended to the same frequency range. A comparison of the MT tensor 
impedance and the scalar magnetic reference impedance then yields a complete 
distortion matrix at low frequencies (Junge, 1988). However, that distortion matrix 
is only useful as long as the 3D structure has a scale insufficient to produce strong 
anomalous magnetic fields at those periods. This case is described by Equation 
(7b). The relative level between apparant resistivities can be obtained from the 
MT tensor and one static shift factor is fixed by comparison to the reference 
impedance. 

As an example, in Figure 13 MT and magnetic reference impedances of three 
sites in Germany are displayed for the frequency range 2-3 cpd. The magnetic 
reference impedances are close together, indicating no dramatic upper mantle 
conductivity anomalies in that target area. In contrast, the MT impedances vary 
strongly from site to site. This indicates the presence of anomalies which are small 
compared to the penetration depth at 2-3 cpd (400 km). 

In terms of Equation (10), the low frequency reference technique yields the 
product tensor CuCd. This distortion matrix cannot simply be used to remove the 
static shifts at all higher frequencies. In particular, some crustal structures which 
affect the DC distortion matrix at low frequencies will act as an inductive anomaly 
at some high frequency. 

A second constraint of this technique is that very strong conductivity anomalies, 
e.g. at a land-ocean transition create an anomalous magnetic field even at frequen- 
cies below a few cpd. The effect of these anomalous fields have to be removed 
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from the flow frequency magnetic data prior to the calculation of the magnetic 
reference impedance (Bahr and Filloux, 1989). 

Magnetovariational Link to Undistorted Reference Site 

This method is a combination of the MT and the magnetovariational (MV) tech- 
nique in the same frequency range (Jensen and Sierra, 1988). In the other two 
techniques mentioned,  distortion matrices for very high or very low frequencies 
are calculated but this method is applied in the mid-frequency band (several 
seconds to several hours). In this frequency band, deep crustal conductivity anom- 
alies may provide an inductive rather than a galvanic response. If the inductive 
anomaly is roughly 2D, then Equation (10) is replaced by 

z = c ~ z 2  (11) 

where Cu refers to the galvanic response of a surface anomaly and Z2 refers to 
the inductive anomaly in the coordinate system of regional strike. Finding this 
regional strike then requires the decomposition that involves the most complicated 
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a priori  model where, depending on the resolution problem referred to above, up 
to ten parameters occur. Two of them are found by use of the magnetovariational 
link to an undistorted reference site. In contrast, the "surface layer" and "refer- 
ence impedance" techniques may be applied to field situations that involve less 
complex a priori  models. 

The inductive anomaly will, in turn, create inductive lateral changes of magnetic 
variations. These can be measured by use of magnetovariational transfer functions 
between different sites. Except for strong channelling, the MV transfer functions 
are not affected by the surface structures. The "magnetovariational link" method 
requires at least one site where no static shifts occur or where they have already 
been removed by use of some other method. Then, three sets of field data are 
interpreted with the same regional model: (I) The tensor impedance, free of local 
distortion, of the reference site; (II) the regional phases of the impedance at the 
distorted site; (III) magnetovariational transfer functions which link both sites. 
Figure 14 shows an example of the data sets (II) and (III) along with the corre- 
sponding model data. The model was used by Tezkan (1988) to obtain the static 
shift factors for some sites in the Black Forest, Germany. The magnetovariational 
link technique has also been described by Bahr (1988). 

The site-to-site variations of the MV transfer functions are caused by lateral 
changes of conductance. In contrast, static shifts are related to a strong conduc- 
tivity jump but only a minor conductance jump. The correct resistivity levels at 
the distorted site can then only be found if MV transfer functions over a wide 
frequency range are considered. The magnetovariational transfer functions (in 
particular, the induction vectors) should provide an independent check of the 
regional strike. However, in those cases where there is strong 3D galvanic scat- 
tering effects on the electric fields there will normally be generated an anomalous 
3D magnetic field which will include a vertical component. The possible distortion 
of the induction vectors by this anomalous field must be taken into consideration. 

Spatial Filtering or Spatial Averaging 

Different techniques have been developed that incorporate multiple measurement 
of electric fields along a profile. The influence of local structures can be reduced 
by applying a spatial filter to the sequence of impedances along the profile (Torres- 
Verdin and Bostick, 1992; Jones et al., 1989). Other authors argue against the 
application of a filter but rather the use of extremely long electrode separations 
to average out the influence of local structures (Groom and Bailey, 1989b). Figure 
15 shows the field set-up and the resulting sounding curve of Brasse and Junge 
(1984) who used a gas pipeline in order to obtain long electrode separation. 

Normally, the spatial filtering and spatial averaging technique provide no esti- 
mation of a distortion tensor but only a scalar distortion factor at each site. As a 
consequence, two constraints arise: (1) As long as only the telluric field in one 
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direction is considered, the resulting impedances may contain mixtures of two 
regional impedances. (2) This method may help correct the static shift levels in 
the decomposed apparent resistivities, but it is not clear how to correct any phase 
effects in the MT data due to 3D structures. The third constraint of this method has 
already been mentioned with respect to the mapping techniques: If the extension of 
the local structure is unknown, any filter length or electrode separation might be 
insufficient. 

Examples with Field Data 

The physically-based decompositions, in themselves, cannot remove all of the 
galvanic near-surface effects upon the impedance magnitudes as discussed above. 
However if the physical model for the decomposition is correct, then after process- 
ing the regional phase estimates should be close to the true regional phase respon- 
ses. As such, they should vary smoothly from site to site and show a regional 
pattern. Decomposition analyses of a set of more than 32 MT sites, over more 
than 100 km of the Canadian Southern Cordillera (Jones et al., 1988), has indicated 
an effective 2D strike over the entire region containing the sites. Although the 
phases for the 5 sites shown (Figure 10) cover a line of more than 35 km, decom- 
posed responses indicate a well-resolved phase split for periods as long as 300 
seconds. The phase-split implies that there is some sort of electrical anisotropy 
not only in the lower crust but also in the upper mantle. 

For these data, the near-surface structure was particular to the individual site 
while the underlying background structure appears relatively uniform over large 
distances. In this case, the near-surface splitting or anisotropy after decomposition 
is assumed to be only due to the local structures which in fact determines which 
was termed Cu. In many cases, the near surface structure was determined to be 
3D over 1D with the 2D inductive structure strong only at periods greater that 1 
second. In this case, the near surface impedances after the Groom and Bailey 
decomposition can simply be written as 

gZ~176 1+sO 1-Os)I '  (12) 

where I is the identity matrix and Zo(to) is the 1D response at the higher frequenc- 
ies. The anisotropy factor, s, can be determined and removed simply by arithmetic 
averaging so that only a single shift factor g remains in the estimated impedances. 
Analytic studies have indicated that this factor is only large if the site is on a near- 
outcropping scatterer. 

Figure 16 compares responses after anisotropy correction for 5 sites which cover 
most of the survey line. The bottom left figure compares the corrected apparent 
resistivities for two westerly sites. The phase responses of these sites are plotted 
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in Figure 10. The bottom right figure contains comparisons of a westerly, a central 
and an easterly site while the top figure compares two easterly sites. Notice how 
in the left and right figures the TE apparent resistivities at long periods are not 
only parallel but have very near the same levels. The TM responses are parallel 
but at somewhat different levels. This would be expected in true 2D data. How- 
ever, site EMR011 seemingly has its magnitudes still shifted up. It is possible that 
at this site the remaining scaling factor, g, is relatively large. 

In the second example (Figure 17), phases from five sites in the vicinity of the 
German deep drilling project in east Bavaria are displayed. The sites are situated 
within a square of 5 km on a side. All five sites are influenced by strong local 
distortion. Figure 17 (top) show the phases after conventional 2D rotation. Figure 
17 (bottom) shows the regional phases after decomposition. The conventional 
rotation yields very unstable phases because of the mixing effects referred to 
above. The decomposition yields two regional phases which indicate that a regional 
2D structure can be recovered after removal of local distortion. The regional strike 
was found to be east-west coinciding with the strike indicated by the long period 
induction vectors (Bahr, 1991). 

Conclusion 

One, two and three-dimensional parametrizations of the magnetotelluric imped- 
ance tensor all have their place in a data interpretation scheme. However, three 
dimensional scattering effects can result in extremely incorrect structural interpre- 
tations if an incomplete analysis is done. Although the first-order effects of electric 
field scattering can be the most severe effect, magnetic effects caused either by 
the current channelling or induction can have significant effects on the estimated 
phases. Incorrect determination of the regional strike will reduce the phase separ- 
ation between TE and TM modes and obviously lead to erroneous structural 
interpretation. 

Although present three-dimensional decompositions can be extremely useful, 
they are also fraught with many problems. Strong current channelling can lead to a 
poorly determined inverse problem. Large noise coupled with a weak 2D inductive 
response results in a poorly resolved strike direction. 3D phase effects from an 
anomalous magnetic field adds to these problems. Nevertheless, correct analysis 
of the data with conventional, mathematical and galvanic 3D decomposition meth- 
ods adds valuable information about the scattering processes governing the data. 

A large problem remaining after 3D decomposition is correcting the levels of 
the recovered regional impedances. A number of methods are available for doing 
this although each has its own drawbacks and advantages. Multiple methods 
which are consistent with each other is probably the wisest choice at present. 
Additionally, care must be taken that 3D phase effects are not present in the 
recovered regional impedances prior to 2D inversion. 
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