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SOME EFFECTS O F  MULTIPLE LATERAL 
INHOMOGENEITIES IN MAGNETOTELLURICS’ 

R .  W .  GROOM2 and R .  C. B A I L E Y 3  

ABSTRACT 
GROOM, R.W. and BAILEY, R.C. 1989. Some effects of multiple lateral inhomogeneities in 
magnetotellurics. Geophysical Prospecting 37, 697-712. 

The analytical solution, for the H-polarization magnetotelluric impedance, of a series of 
multiple, vertical, conducting slabs (dikes) embedded in a host medium is extended to an 
infinite array in order to model an anisotropic layer. The solution is used to study the effects 
of such strongly anisotropic media on the surface impedance. At low frequencies such verti- 
cally laminated structures behave as a bulk material. It is shown that the effective bulk 
parameters are those expected from d.c. theory. However, practical electrode separations may 
not be long enough or adequately positioned to correctly obtain these bulk parameters from 
the measured impedance. Thus, such structures can masquerade as quite different one- 
dimensional structures. A haphazard use of long electrode spacings will not necessarily 
produce correct results. 

INTRODUCTION 
Conductivities within the Earth often vary by orders of magnitude laterally as well 
as vertically. The electromagnetic response of these variations generally involves an 
interaction between inductive and galvanic effects with the most dramatic spatial 
variations occurring in the electric fields. These variations cause significant prob- 
lems in the interpretation of magnetotelluric data, and it is therefore useful to have 
analytical solutions for simple models of such structures. 

The two-dimensional (2D) H-polarization mode is a relatively simple but still 
useful model as it maintains the two physical effects, their interaction and the 
marked effects on the electric field. We describe the analytical solution, in the H- 
polarization mode, to the effects of multiple, vertical, conducting slabs (dikes) 
embedded in a host medium. The solution is then extended to an infinite periodic 
array to model an anisotropic layer. Extreme electrical anisotropy can be developed 
by these models. 
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The study provides some insight into the influences of multiple, horizontal, later- 
ally bounded, inhomogeneities on magnetotelluric (MT) sounding curves. The solu- 
tion method can be utilized to study the effects of such complicated media on the 
surface impedance, the effective bulk parameters of these media and the information 
that can be recovered by magnetotellurics. This is a particularly useful model to 
study, as we can examine two important problems which are presently of interest in 
MT. The first problem is how such quasi-anisotropic structures may mislead con- 
ventional 1D interpretation. Such structures have already been invoked to explain 
magnetotelluric results (Schmucker, 8th Workshop on EM Induction in the Earth 
and the Moon, Neuchiitel, Switzerland, 1986). Secondly, with this model we can 
study an experimentally important problem; how to obtain adequate spatial sam- 
pling of the electric field. The experimentalist would like to know what sorts and 
sizes of effects can arise over such structure from too small an electrode separation 
or from misplaced electrodes. 

For an infinite array of dikes, an analysis was done to determine effective bulk 
medium parameters for such structures. Both from this analysis and from the com- 
puter solutions one can distinguish the important parameters and their effect on the 
MT sounding curves. These parameters include the host resistivity, the resistivity of 
the inhomogeneities, the resistivity-thickness product of the inhomogeneities, the 
basement depth and conductivity, and the measuring position. As well as varying 
from the laterally homogeneous response, the surface response can vary dramat- 
ically from position to position. 

It is then shown that the thickness of the anisotropic layer can be correctly 
determined by MT sounding curves if the layer is taken to have a uniform resistivity 
which is equal to its effective resistivity. With correct spatial sampling of the electric 
field, we can also obtain the correct effective resistivity by the MT method. 
However, it is also shown that, for such elongated structures, incorrect sampling of 
the electric field can produce apparent resistivities which are very different from the 
effective bulk resistivity. The results show the MT method to be an effective method 
for determining both the appropriate bulk conductive parameters and the correct 
thicknesses of significantly inhomogeneous media. This is especially true if the 
complex material is buried at some depth. 

Lateral structures can masquerade as 1D structure. For example, the H- 
polarization response, obtained over a conducting host which contains resistive 
dikes, seems to indicate a conducting layer at depth when this data is interpreted 
only in 1D. A change in measuring position or long electrode spacings will not 
always help, because in some structures even large changes in measuring position 
will not detect the lateral structure. 

THE EFFECTS OF A FINITE NUMBER 
OF VERTICAL DIKES 

Rankin (1962) adapted the Fourier technique of d’Erceville and Kunetz (1962) for a 
single vertical contact to obtain the H-polarization solution for a vertical, conduct- 
ing, rectangular prism of infinite length embedded in a host material. Wait and Spies 
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(1974) proposed extending the Rankin model to multiple dikes. However, although 
they provided some of the mathematical development for multiple structures with a 
perfectly insulating basement, they restricted their results to only one dike. (Wait 
and Spies (1974) provided normalized responses as functions of position across the 
single dike.) Here, the method of Rankin (1962) is first extended to  obtain the solu- 
tion for multiple, vertical structures or dikes. In particular, we initially examine the 
problem of a sequence of N dikes of horizontal thickness d and resistivity pd embed- 
ded in a host medium of resistivity ph.  Each dike is separated by a distance h and 
the inhomogeneity structure has a depth D. The general model is illustrated in 
Fig. 1. The model here is restricted to only two basement resistivities (pB), zero and 
infinity. Recall (Jones and Price 1970) that for the H-polarization mode 

H = H(x,  z)eiW‘j, (la) 

(1b) V 2 H  = iap,oH = u2H, 

aH oE, = -. ax 
Following Rankin, in any region labelled i (Fig. l), let 

Hi(x, z) = H;(z) + Pi(x,  z), i = 1 ,  2N + 1, 

where HP(z) is the layered solution for region i if no lateral variation existed and 
Pi(x,  z )  is the secondary magnetic field in the same region. Each perturbation func- 
tion satisfies the 2D Helmholtz equation (lb) 

(2)  

V2Pi  = ui” P i  (3) 

z.0 

Y 
x.0 

‘X 

z=D 

p=o/a ,  
FIG. 1. An illustration of the 2D model for horizontal anisotropy which contains N dikes. 
The dikes have thickness d and are separated by a distance h. The resistivity of the dikes is pd 
and that of the host, ph . The inhomogeneity structure has a depth of D m. The upper resisting 
half-space represents the Earth’s atmosphere. 
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in each homogeneous region. The differential equation (3) is separable and thus the 
perturbed solutions have the form 

CO 

Pi(x, z )  = C fi,(x) sin I,Z, 
n = l  

since the perturbed solutions are zero at the surface, ( z  = 0). Here 

(4) 

nn , 

D 
I ,  = - p B  lf p B  = 0O 

and 

71 
I ,  = (n + 3) - p B  if p B  = 0. D 

The question of why the spectrum contains only discrete (meaning the spectrum 
has the cardinality of the integers) eigenvalues (A,) arises. In other words, why is 
there not a continuous (cardinality of the real numbers) set of eigenvalues in the 
spectrum. That is, we would expect that in the most general case the solution would 
consist of a Fourier series as in (4) as well as a Fourier transform. In fact, it can be 
shown explicitly (Groom 1988) that for a horizontally bounded region of width L 
and arbitrary basement conductivity, there is an additional contribution, P? , to the 
secondary magnetic field given by 

nnx sinh &,z 2 nxs 
Pi(D, s) sin - ds. 

L 
P&, x) = sin - 

n =  1 L sinh & , D  

Here, Pi(D, x) is the secondary magnetic field along the interface between the 
bounded region and the basement. For an infinite region extending laterally from 
x = 0 to + 00, this contribution becomes a Fourier transform 

sinh P(q)z 
sinh b(q)D Pi(D, 4) dq, 

with a similar solution if the region is extended to --CO. P,(z = D )  is the Fourier 
transform of the secondary magnetic field along the interface between the semi- 
bounded region and the basement. First note that if the basement resistivity is infin- 
ite, then Pi(D, x) = 0 everywhere and P’ is identically zero for both bounded (6a) 
and unbounded (6b) regions. Secondly, although this additional contribution is zero 
at the surface of the earth, the vertical derivative and thus the horizontal electric 
field at the surface is not necessarily zero. In particular, when the basement conduc- 
tivity is infinite, the perturbed magnetic field is not zero everywhere along the base- 
ment contact and this additional contribution to the secondary magnetic field, 
which in turn contributes to the horizontal electric field, is not necessarily zero. 
Analytically, this contribution for the infinitely conducting basement has been 
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ignored by previous authors. However, by comparison with numerical solutions for 
a single contact with a non-infinite but moderately high basement conductivity 
(Groom 1988), the contribution of the continuous spectrum (6b) was not found to be 
significant except near the basement. Here, we require solutions only at the surface 
(z = 0). Therefore for the perfectly conducting basement, the possible contribution of 
either (6a) for a finite region or (6b) for the semi-bounded region will be ignored. 

If the basement is perfectly conducting thenf;.,, = 0 when n is even to ensure that 
the horizontal electric field is zero at the interface z = D. Also 

b,, = 0, n = 1, 2, ..., (74 

a 2 N + l , n = 0 , n = 1 , 2  ,..., (7b) 

which ensures that the fields decay to zero correctly as the lateral position increases 
to infinity (i.e. I x I + CO). The remainder of the coefficients are obtained in a similar 
manner to the d'Erceville and Kunetz (1962) solution for a vertical contact solution. 
If there is a vertical contact at xi, then equating the horizontal magnetic field for all 
depths, z at x i  results in 

m 

Pi(x i ,  z )  - P i +  l(xi, z )  = H:+ l(z) - H?(Z) = AHP(z) = cin sin A,,. (8) 
n =  1 

Then, using the orthogonality of the sine functions, 

fi,,(xi) - f i + l ,  ,,(xi) = tin, i = 1,2N; n = 1, 2, . .. . (9) 

The Fourier coefficients c,,, are determined simply from (8) since they are the coeffi- 
cients of a known function (AHL). A similar relation between thef;., are obtained by 
equating the tangential component of the electric field (vertical field) at each 
conductivity-contrast contact. In this way, a system of 4N linear equations with 4N 
complex coefficients (a,,,, bin) is developed for each Fourier component. The 4N 
coefficients (a,,,, bin) describing the perturbed fields are then found by solving this 
complex matrix equation. 

Figure 2 is an example of surface impedances (E, /H) from such a model. This 
particular model consists of five relatively conducting dikes (pd = 10 Qm, 
d = 500 m) separated by a distance of 500 m in a host (p,, = 1000 am). The depth of 
the dikes is 1000 m and the impedances were calculated at a frequency of 100 Hz. 
This example was chosen as it shows intermediate behaviour between the high fre- 
quency response which sees only the very local material and the low frequency 
response which is considerably affected by the basement conductivity. At this fre- 
quency, the skin-depth in the resistive material exceeds the width of the resistive 
structures whereas the skin-depth in the conducting material is less than the width 
of the conducting structures. The choice of basement resistivity is not relevant here 
since, at this frequency, the depth of the structure is much larger than skin-depth in 
either the host or the dikes. 

The impedances in Fig. 2 are presented as a function of position along the top 
surface of the structure (z = 0). The entire structure begins at 0 and ends at 5000 m. 
The impedance magnitudes are expressed as apparent resistivities while the complex 
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FIG. 2. Surface impedance across five vertical pairs in terms of apparent resistivity and phase 
at 100 Hz. The parameters are h = d = 500 m, p,, = 10 and ph = 100 h. The half-space is 
perfectly resisting and at a depth of loo0 m. (-) apparent resistivity, (. .... .) impedance 
phase. 

phase of the impedance (MT phase) are given in degrees. A number of effects can be 
seen in this example (Fig. 2). Firstly, the apparent resistivity is suppressed over the 
relatively conductive dikes while it is slightly enhanced over the resistive host. Sec- 
ondly, the impedances are sometimes a function of position (e.g. over the conductive 
dikes). Significant lateral gradients in the impedance occur only when the distance 
to the nearest vertical contact is less than one skin-depth in that medium. As fre- 
quency decreases to a point where the entire width of the slab is significantly less 
than a skin-depth, the impedance over a particular vertical structure (whether host 
or dike) becomes independent of position (e.g. as over the resistive host in Fig. 2). 
The suppression of the apparent resistivities over the conductive material was found 
to be a function both of the frequency and the ‘resistivity x thickness’ product of 
the resistive material. 

THE EFFECTS OF A N  INFINITE 
PERIODIC A R R A Y  

In the centre of the structure which contains five dikes, the impedances are essen- 
tially periodic with a period of 1000 m. This suggests a computationally more efi- 
cient but still informative model. Rather than a set of N dikes in a host, the model 
used was an infinite periodic sequence of vertical structures of alternating resistivity, 
pa and ph , and widths d and h. In this manner, a model for an anisotropic layer over 
a half-space is developed. The solution follows from the modified solution for multi- 
ple dikes. An advantage of the periodic model is that the fields are much quicker to 
solve numerically and thus the model provides a means for more rapid study. Since 
the structure is entirely periodic over all values of x then the fields on the left of 
these vertical doublets must equal the fields on the right. In this way only four 
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complex coefficients are required for each Fourier component and thus only a 4 x 4 
linear system must be solved to obtain each of the components. In addition, for 
high-order Fourier components there are approximations for the coefficients and 
the numerical solution can be obtained even more rapidly. This model also allows 
us to readily obtain the charge on the interfaces utilizing the continuity of normal 
current density and Gauss's Law. This can be useful since the suppression and 
enhancement of the electric field, which causes the variation in the apparent 
resistivities, is due mainly to gross polarization of the medium. Charge develops on 
the vertical interfaces and this charge produces a secondary field which either 
increases the electric field (in the resistive material) or decreases the electric field (in 
the conducting material). 

Figure 3 shows how similar the solutions are for the two models. This figure 
utilizes the equivalent structural parameters for this periodic model, to those used 
for the finite dike model of Fig. 2. The modified structure now consists of alternating 
conducting (pd = 10 Qm) and resistive (ph = 1000 Qm) vertical dikes of 500 m width. 
The depth of vertically laminated material is that of the model for Fig. 2, namely 
1000 m. 

80 
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AN INVESTIGATION OF THE BULK 
PROPERTIES OF THE MODEL 

The alternating periodic dike structure enables one to analyse the bulk properties of 
this extremely electrically anisotropic layer. Here the effective conductivity for hori- 
zontal current flow is quite different from that for vertical flow. As frequency 

E 
C 

FIG. 3. The impedances across one vertical doublet of a periodic array which has a structure 
comparable to the finite number of dikes in Fig. 2. Each vertical structure is 500 m across. 
The resistive host is on the left while the conducting dike is on the right. (-) apparent 
resistivity, (. . . . . . .) impedance phase. 
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decreases, the horizontal electric fields at any given depth in such a composite layer 
will eventually become essentially constant as a function of horizontal position 
within each member of the pair. The entire field is then nearly horizontal and decays 
with depth. At such frequencies one can treat the anisotropic layer as a bulk 
medium. The frequency must be such that the skin-depth in both of the vertical 
structures becomes significantly larger than the widths in the respective material. 
This can be verified by evaluating the horizontal fields as a function of depth with 
this solution, and determining if the fields are constant across a dike at any given 
depth. 

The effective d.c. resistivity of the medium is the spatially averaged resistivity 

It will be shown later that this is, in fact, the correct horizontal resistivity for such 
structure at low frequencies. (The concept that one vertical structure in the pair is 
the dike and the other the host is retained throughout this analysis.) Since current 
density is continuous across all these vertical interfaces, J ,  will be constant as a 
function of x. We define an effective or average electric field by 

1 
J = - E,,, 

Pef f  

and the electric fields in each region can then be described in terms of this average 
or effective electric field. Thus, in the dike 

while in the host 

P h  

Pef f  
E ,  = p , J  = - E,,,. 

From voltage considerations 

dEd + h& = (d + h)E,,,, 

and thus it is easily shown that (12-14) 

Therefore, in the resistive limit the apparent resistivity over the dike is given by 
(154 
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and similarly over the host (15b) 

If the dikes are resistive relative to the host then p Jpa < 1. Therefore, P(d) < 1 
and P(h) > 1 ; thus the obvious conclusion is reached that 

The variations from the effective resistivity are not only dependent on the ratio of 
resistivities but the ratio of the widths. For example, a thin resistive dike produces a 
relatively large increase in apparent resistivity over the dike. On the other hand, a 
thick resistive dike produces a large decrease in apparent resistivity over the host. 
Clearly, if the dikes are conducting, these relations are reversed. 

THE FREQUENCY RESPONSE OF T H E  MODEL 

The results of the above analysis indicate a low-frequency behaviour for the medium 
which may not be surprising to the reader. The high frequency result is also obvious 
as the apparent resistivity will approach the resistivity of the local material. 
However, this model and solution enables another aspect of magnetotelluric behav- 
iour to be studied; namely the response in the transitional frequency range between 
the low and high frequency behaviour. In particular, to study whether the imped- 
ance response can be modelled in 1D and if so whether false conducting or resistive 
layers could thus be inferred. One could argue that such incorrect inferences would 
never be made, as 1D models should not be used to fit impedance tensors which are 
observed to be 2D. However, small-scale 3D inhomogeneities will often cause a 
‘mixing’ of the E- and H-polarization impedances of a 2D structure (Groom 1988). 
As a possible consequence (Groom 1988) a genuine 2D structure can appear as a 1D 
structure with ‘static shift’. The interpreter might then be led to interpret the data 
with a 1D model. 

Figure 4 is an example computed using the method described in this paper. It is 
used to illustrate the effects of such horizontally laminated structure. A plot (Fig. 4) 
is given of apparent resistivity versus frequency at points over both a resistive region 
and a conducting region. In this example, which models a set of resistive dikes in a 
more conducting host, d = 50 m, pd = 1000 Rm, h = 550 m and ph = 10 Rm. The 
depth of the structure was chosen to be 15 km to clearly illustrate the effects. 

Firstly, note (Fig. 4) that over the resistive dike at all frequencies sufficiently high 
not to be significantly affected by the basement, the apparent resistivity is enhanced 
above the resistivity of the dike. Over the relatively conducting host, the apparent 
resistivity is suppressed as expected from (18). (The measurement point is exactly in 
the middle of each member of the doublet structure.) One can see the frequency- 
dependent effect of the structure. At high frequencies, each member of the structure 
is seen individually. As frequency decreases, a transition to impedances due to the 
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FIG. 4. Surface apparent resistivity as a function of frequency at two sites. One site at the 
centre of resistive inhomogeneity (d = 50 m, pd = 1000 Qm) while the other is at the centre of 
conducting host (h  = 550 m, ph = 10 am). The depth of the anisotropic layer is 15 km. 

bulk properties is made, and finally at low frequencies the basement resistivity 
dominates. The results are shown for both zero and infinitely resistive basements. In 
the low frequencies the apparent resistivities sweep upwards for the infinitely 
resistive basement and sweep downwards for the infinitely conducting basement. 

It is important to note that, as frequency decreases, the laminated structxe is 
thick enough that the apparent resistivities reach the bulk effective resistivities prior 
to significant effects due to the basement resistivity. This is important as it means 
that the truncation of the anisotropic layer by the lower half-space has not inter- 
fered with the nature of the transition of the anisotropic layer’s response from its 
high frequency response to that of a bulk medium. Equations (15H17) predict the 
apparent resistivities when the anisotropic layer is acting as a bulk medium and the 
basement has negligible effect. For example, at 0.1 Hz where the laminae thicknesses 
are much less than a skin-depth in the respective media but the depth of the lami- 
nated layer considerably exceeds a skin-depth, the figure agrees well with the pre- 
dicted bulk properties. Over the conducting region, these equations predict that by 
0.1 Hz the apparent resistivity should be 1.08 Rm while over the resistive region it 
should be 1.8 x 104 Rm. The bulk effective resistivity (10) for this model is 92.5 Rm. 
Figure 4 shows that the apparent resistivities level off very close to these values 
before being swung upwards or downwards at still lower frequencies by the base- 
ment resistivity. 

Now consider how the basement is revealed by the impedance response in Fig. 4. 
The frequency at which the apparent resistivities begin to change rapidly to 
approach the basement resistivity is 0.1 Hz. At this frequency the fields just pen- 
etrate to the basement and thus contain information about the apparent depth to 
basement. If the material were homogeneous this would happen at a frequency 
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where the thickness of the layer was approximately one skin-depth. At 0.1 Hz, the 
skin-depth in a material having a resistivity equal to that of the effective resistivity 
(92.5 a m )  would be approximately 15 km. Whereas 15 km is approximately one 
skin-depth at 1 Hz in the resistive dikes and one skin-depth at 0.01 Hz in the con- 
ducting host. Thus, we can conclude that at 0.1 Hz the anisotropic layer is acting 
like a bulk material having a resistivity equal to that of the effective resistivity. In 
particular, the correct thickness can be determined if the effective bulk resistivity is 
utilized. However, the shift of the apparent resistivities up or down from the effective 
resistivity is strongly a function of position; considerable averaging over measuring 
sites or possibly very long telluric lines would be required to evaluate it. That the 
apparent resistivities over the dike and host can be predicted from bulk consider- 
ations also indicates that the layer is acting as a bulk material. How to evaluate the 
effective bulk resistivity and the correct thickness of the anisotropic layer will be 
considered below. 

Finally, note that over the conducting host, the thin resistive dikes have the 
effect of producing what appears to be a conducting layer at depth when the curves 
are interpreted only in 1D as shown in Fig. 5. As an example of how well this type 
of data can be modelled in lD, the sounding data over the conducting region from 
the previous model (Fig. 4) are inverted and the fit to data shown in Fig. 5. The 
inversion of data for the resistive basement was used in this plot. The 1D model 
chosen was two layers over a half-space with the resistivity of the top layer con- 
strained to be 10 Rm. Arbitrarily, a phase error standard deviation of 2" and an 
apparent resistivity standard deviation of 10% were added to simulate real data 

A 

FREQUENCY (Hz) 

FIG. 5. 1D inversion of 2D data. The data is that of the previous model (Fig. 4) from the site 
over the conducting host. The inversion model contains two layers over a half-space. The 1D 
model parameters are d ,  = 192 m, d ,  = 1707 m, p1 = 10 Rm, pz = 1.14 Rm, pB = 106 Rm. 
The error bars give one standard deviation in the synthetic data. (-) 2D data, (. . . . . .) 1D 
fit. 
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with noise. The model parameters which fitted the impedance curves of Fig. 5 are 
d ,  = 192 m, d2 = 1707 m, p1 = 10 Rm, p2 = 1.14 Rm and pB = 106 Rm. 

Although only the resistive basement data is used for Fig. 5, the inversions were 
done with both basement resistivities to compare the results. Except for the base- 
ment resistivity in the 1D model, the 1D parameters for the two basement conduc- 
tivities are very similar, which indicates that the basement conductivity was not a 
factor in the parameters for the false conducting layer. For the conducting basement 
at the same site, the best fitting model parameters are d ,  = 188 m, d 2  = 1919 m, 
p1 = 10 Rm, p2 = 1.2 Rm and pB = 10-6 Rm. Thus, for this particular model, the 
apparent resistivities and phases at the host measuring position produce 1D models 
which have a false conducting layer at depth. 

Interpretation of the other polarization (E-polarization) for such a model would 
prevent such misinterpretations by indicating an electrical anisotropy at depth. The 
question that then arises is whether the response is due to 2D or 3D structure, or 
1D anisotropy. The 1D anisotropic model may be important in practice. Schmucker 
(1986 EM Induction Workshop, as above) observed such quasi-anisotropy in the 
crust or upper mantle under Western Germany and attributes it to a series of highly 
conducting dikes. R. Kurtz (private communication) also has data which may indi- 
cate deep anisotropy in the mantle under Ontario. 

EXPERIMENTAL EVALUATION O F  THE BULK 
PARAMETERS 

How should one actually determine the correct bulk parameters from impedance 
measurements? If one does not correctly measure the effective bulk resistivity then 
the thickness will be determined incorrectly. The ideal solution, of course, is to 
correctly measure the average electric field (1 l), but in the absence of a priori knowl- 
edge of the inhomogeneities this can be difficult experimentally. 

The presented laminated model and solution allow this problem to be studied. 
Two scales for the inhomogeneities will be considered: in one the widths of the dikes 
are significantly less than the electrode spacing, while in the other the dike widths 
are comparable with the electrode spacing. 

Figure 6 illustrates how electrode placement, for measuring the electric field, 
determines the apparent resistivity obtained. In this model, d = h = 1 km, pd = 10 
and ph = 1000 Rm. The depth of the structure is 5 km and the basement resistivity 
is zero. Equation (10) tells us that the effective resistivity is 505 Rm while (16) indi- 
cates the apparent resistivity of the conducting dikes is 0.2 Rm while over the 
resistive host it is 1980 Rm. Figure 6 shows the apparent resistivities and phases for 
five different electrode placements. All the electrode lengths are 1000 m. The place- 
ments range from the electrode being entirely over the conducting region (0 x lOOO), 
through three-quarters over it (250 x 750), half (500 x 500), one-quarter (750 
x 250), to entirely over the resistive region (1000 x 0). It can be seen from Fig. 6 

that one sampling (500 x 500) of the electric fields can give the correct bulk resis- 
tivity (505 am). This occurs here when one samples equally over both structures. 
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FIG. 6.  A study in the use and abuse of long electrodes to measure the electric field. In this 
model d = h = 1 km, while ph = loo0 Rm, pd = 10 Qm, D = 5 km and the effective bulk 
resistivity (peff) is 505 Rm. The electrode length is 1 km and the surface impedances are 
shown for five different electrode placements. 
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However, misleading bulk parameters are obtained if the electrodes are incorrectly 
placed. The errors occur mostly in the apparent resistivities, except when there is no 
sampling of the electric field over the resistive part of the structure. Then significant 
phase deviations occur. The resulting apparent resistivities are shifted from those of 
the bulk response by more or less frequency-independent factors. The phase 
responses, on the other hand, are virtually identical except or where the electric field 
was sampled simply over the conducting material. Finally, note that at 5 Hz one 
skin-depth in the bulk material (505 Rm) is 5058 m. This is the frequency at which 
the model begins to turn significantly downwards, towards the basement resistivity 
(zero). The conclusions from this model are that, although long electrode spacing 
can help, for elongated structures the method must be used with care. 

Finally, a different scale of inhomogeneity is studied where the electrode separa- 
tion is much greater than lamina thickness. This models inhomogeneities which are 
small compared to the electrode length. The resistivity contrast is again the same as 
in the previous models (l(r1000 am). The thickness of the dikes is 10 m and they 
are separated from each other by 10 m of host. The depth of the anisotropic layer is 
2000 m. Again the effective resistivity is 505 Rm (10). With averaging over several 
laminae or doublet pairs we expect reasonable estimates of bulk parameters. Figure 
7 presents the impedances when the electrode length is 110 m. With a fixed electrode 
spacing, the impedances are only slightly dependent on position. For this reason, 
the response for only one particular placement of the electrodes is plotted. The 
electrode covered five doublet pairs and then extended 10 m onto the conducting 
host. For an electrode of this length, this layout is expected to have the largest 
variation from the effective resistivity. Figure 7 shows, however, that this electrode 
layout determines a value very close to the correct bulk resistivity. The skin-depth 
in 505 Rm material is 2064 m at 30 Hz. This is the frequency at which the basement 
begins to significantly affect the apparent resistivity. Thus, in this case, the spatial 
sampling of the electric field has been adequate to produce both an apparent 
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FIG. 7. Fine structure impedance with 110 m electrode. In this model d = h = 10 m while 
again ph = 1000 n m  and pa = 10 am. The electrode covers five doublet pairs and one more 
conducting structure. 
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resistivity which is appropriate for the material (the effective resistivity) and the 
correct thickness of the layer when the correct bulk parameter is used. 

SUMMARY 
A solution has been provided for the MT H-polarization impedance over a strong 
horizontally anisotropic structure which models the frequency dependence of the 
transition from the influence of the individual media to that of the bulk medium. 

For structures of this type it is shown that at sufficiently low frequencies, the 
material behaves as a uniform material with effective bulk properties. The correct 
bulk resistivity is its effective resistivity (10). The model has indicated that for elon- 
gated structures MT can obtain useful parameters if the electric field is sampled 
correctly. However, incorrect sampling can produce erroneous results. These erron- 
eous results are dependent upon frequency, the host resistivity, the depth of the 
inhomogeneous layer and the ‘ resistivity x thickness ’ product of the inhomoge- 
neities. A haphazard use of long electrodes will not necessarily produce useful 
results. It is also shown that in the presence of resistive dikes, impedance curves 
obtained over the more conducting host can produce false conducting layers if the 
curves are interpreted only in 1D. Experimentally, these false interpretations can be 
difficult to detect because of the mixing of polarizations by 3D inhomogeneities. 

A conducting layer overlying such a structure will have the same effects on the 
measured impedance as the use of a long electrode. That is, the electric fields over 
the two laminae will become more uniform by the averaging effect of the diffusing 
through the upper layer. The amount of averaging will depend upon the relative 
thickness of the layer and the width of the doublet. If the overlying structure is 
sufficiently thick, the electric fields measured on the Earth‘s surface should be the 
averaged electric field. Thus, when the anisotropic layer is buried at sufficient depth, 
magnetotellurics perceives the structure in a ‘ reasonable ’ manner. However, the 
results indicate that if resistive dikes do not reach the surface a false conducting 
layer could be indicated on the sounding curves without any surface signature for 
the dikes. This will occur when the overlying layer is not electromagnetically thick 
and the distances between the contacts are relatively large compared to the elec- 
trode spacing. 
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